Loading learning content...
Task decomposition is the process of breaking a computational problem into smaller, independent pieces that can execute in parallel. It's the critical first step in parallel algorithm design—before you can fork and join, you must identify what to fork.
Effective task decomposition is both an art and a science. The art lies in recognizing parallelism opportunities in seemingly sequential algorithms. The science lies in understanding the quantitative tradeoffs: overhead costs, load balancing, cache effects, and synchronization requirements.
Poor decomposition leads to disappointing parallel speedups—or worse, parallel slowdowns where overhead exceeds sequential execution. Excellent decomposition unlocks near-linear scaling with available cores, turning a 10-minute computation into a 30-second one.
By the end of this page, you will understand: how to identify parallelizable work, the distinction between data parallelism and task parallelism, granularity selection strategies, load balancing techniques, decomposition patterns for common problem types, and the mathematical framework for analyzing decomposition quality.
Amdahl's Law: The Fundamental Limit:
Before exploring decomposition strategies, we must understand Amdahl's Law—the fundamental limit on parallel speedup:
$$Speedup = \frac{1}{(1-P) + \frac{P}{N}}$$
Where:
If only 50% of your work is parallelizable (P = 0.5), the maximum speedup is 2x—regardless of how many processors you have. This underscores the importance of decomposition: maximizing P is often more impactful than adding more processors.
The first step in task decomposition is identifying which parts of a computation can execute independently. This requires understanding data dependencies—the relationships between operations that constrain execution order.
Types of Dependencies:
True Dependency (Read-After-Write): Operation B reads a value written by A. B cannot execute until A completes.
Anti-Dependency (Write-After-Read): Operation B writes a value read by A. B must wait for A to read the old value.
Output Dependency (Write-After-Write): Both A and B write to the same location. Order must be preserved.
No Dependency: A and B access disjoint data, or both only read shared data. These can execute in parallel.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
"""Dependency Analysis Examples:Identifying which operations can execute in parallel.""" # Example 1: Loop with NO dependencies - PARALLELIZABLEdef independent_iterations(): """Each iteration operates on independent data.""" results = [0] * 1000 # Each iteration writes to a different index # No iteration reads another's output # All iterations can execute in parallel for i in range(1000): results[i] = expensive_compute(i) # ✓ Parallel return results # Example 2: Loop with TRUE dependency - SEQUENTIALdef dependent_iterations(): """Each iteration depends on the previous result.""" result = 1 # Each iteration reads 'result' written by previous # True dependency: read-after-write for i in range(1, 1000): result = result * i # ✗ Sequential return result # Example 3: Loop with REDUCIBLE dependency - PARTIALLY PARALLELIZABLEdef reducible_pattern(): """Reduction: combine results associatively.""" data = [1, 2, 3, 4, 5, 6, 7, 8] # Naive sequential sum total = 0 for x in data: total += x # Seems sequential due to 'total' dependency # But addition is associative: (a+b)+c = a+(b+c) # Can decompose into parallel partial sums, then combine: # Partition: [1,2,3,4], [5,6,7,8] # Parallel: sum1=10, sum2=26 # Combine: 10 + 26 = 36 # This is the REDUCTION pattern # Example 4: Map pattern - EMBARRASSINGLY PARALLELdef map_pattern(data): """Apply independent function to each element.""" # Each call is independent - perfect parallelism results = [transform(x) for x in data] # ✓ Parallel return results # Example 5: Prefix sum - SEEMINGLY SEQUENTIAL, ACTUALLY PARALLELdef prefix_sum_analysis(): """ Prefix sum: result[i] = sum(data[0:i+1]) Naive approach seems sequential: result[0] = data[0] result[i] = result[i-1] + data[i] # Depends on previous! But there's a parallel algorithm (Blelloch scan): O(n) work, O(log n) span Key insight: operations can be restructured to expose parallelism. """ pass # Example 6: Dependency Graph Analysisdef analyze_dependencies(): """ Consider these operations: A: x = input1 * 2 B: y = input2 + 3 C: z = x + y D: w = input3 - 1 E: result = z * w Dependency graph: A ──┐ ├──► C ──┐ B ──┘ ├──► E D ─────────┘ Parallel schedule: - Level 1: A, B, D (all independent) - Level 2: C (depends on A, B) - Level 3: E (depends on C, D) Speedup: 5 sequential operations → 3 parallel steps """ passThere are two fundamental approaches to decomposing parallel work: data parallelism (same operation on multiple data elements) and task parallelism (different operations executing concurrently). Understanding which approach fits your problem is crucial for effective decomposition.
Data Parallelism:
In data parallelism, we partition data across parallel workers, with each worker applying the same computation to its partition. This is the dominant model for numerical and array-based computations.
Characteristics:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
import java.util.concurrent.*;import java.util.stream.*; /** * Comparison of data parallelism and task parallelism approaches. */public class ParallelismComparison { // ========================================== // DATA PARALLELISM: Same operation on partitioned data // ========================================== /** * Data-parallel array processing. * Each element processed identically; data is partitioned. */ static long dataParallelSum(int[] data) { // Fork-Join style: divide array, sum partitions, combine return IntStream.of(data) .parallel() // Automatic data partitioning .mapToLong(x -> x) // Same operation on each element .sum(); // Reduction } /** * Data-parallel image processing. * Each pixel processed by same kernel; image partitioned into tiles. */ static void dataParallelImageProcess(int[][] image, int[][] output) { int height = image.length; int width = image[0].length; IntStream.range(0, height).parallel().forEach(y -> { for (int x = 0; x < width; x++) { // Same convolution operation applied to each pixel output[y][x] = applyConvolution(image, x, y); } }); } // ========================================== // TASK PARALLELISM: Different operations concurrently // ========================================== /** * Task-parallel pipeline. * Different stages process concurrently on different data. */ static void taskParallelPipeline(Queue<RawData> input, Queue<Result> output) { ExecutorService executor = Executors.newFixedThreadPool(3); BlockingQueue<DecodedData> decoded = new LinkedBlockingQueue<>(); BlockingQueue<ProcessedData> processed = new LinkedBlockingQueue<>(); // Task 1: Decode (runs concurrently) executor.submit(() -> { while (true) { RawData raw = input.poll(); if (raw == null) break; decoded.put(decode(raw)); // Different function } }); // Task 2: Process (runs concurrently) executor.submit(() -> { while (true) { DecodedData d = decoded.take(); processed.put(process(d)); // Different function } }); // Task 3: Encode (runs concurrently) executor.submit(() -> { while (true) { ProcessedData p = processed.take(); output.add(encode(p)); // Different function } }); executor.shutdown(); } /** * Task-parallel independent computations. * Different analyses run on same data concurrently. */ static AnalysisResult taskParallelAnalysis(Data data) throws Exception { ExecutorService executor = Executors.newFixedThreadPool(4); // Four different analyses on same data Future<StatisticalResult> statsF = executor.submit(() -> computeStatistics(data)); Future<TrendResult> trendF = executor.submit(() -> detectTrends(data)); Future<AnomalyResult> anomalyF = executor.submit(() -> findAnomalies(data)); Future<ForecastResult> forecastF = executor.submit(() -> generateForecast(data)); // Wait for all (join) return new AnalysisResult( statsF.get(), trendF.get(), anomalyF.get(), forecastF.get() ); } // ========================================== // HYBRID: Both data and task parallelism // ========================================== /** * Hybrid parallelism: parallel pipeline with data-parallel stages. */ static void hybridParallelism(int[][][] videoFrames) { // Task parallelism: different stages // Data parallelism within each stage: parallel over frames/pixels ForkJoinPool pool = ForkJoinPool.commonPool(); pool.submit(() -> { Arrays.stream(videoFrames) .parallel() // Data parallel over frames .forEach(frame -> { // Each frame processed by many workers IntStream.range(0, frame.length) .parallel() // Data parallel over rows .forEach(y -> processRow(frame[y])); }); }); }}Use data parallelism when: (1) you have homogeneous work over large datasets, (2) each element can be processed independently, (3) you want to leverage SIMD or GPU. Use task parallelism when: (1) you have heterogeneous computations, (2) different resources are needed for different operations, (3) you're building pipelines or actor systems. Hybrid approaches are often optimal for complex applications.
Granularity refers to the size of individual tasks in a parallel decomposition. Choosing the right granularity is critical—too fine-grained and overhead dominates; too coarse-grained and parallelism is limited.
The Granularity Tradeoff:
| Granularity | Overhead | Load Balance | Parallelism | Cache Behavior |
|---|---|---|---|---|
| Too Fine | High (fork/join cost per unit) | Excellent | Maximum | Poor (less reuse) |
| Optimal | Amortized | Good | Sufficient | Good |
| Too Coarse | Low | Poor (some cores idle) | Limited | Excellent |
Golden Rule: A task should perform at least several thousand CPU operations to amortize fork-join overhead. The exact threshold depends on your framework and hardware.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
import java.util.concurrent.*; /** * Demonstrates granularity selection and sequential thresholds. */public class GranularityExample extends RecursiveTask<Long> { // Sequential threshold - tune based on workload // Start with ~1000-10000 elements, benchmark to optimize private static final int SEQUENTIAL_THRESHOLD = 5000; private final long[] array; private final int lo; private final int hi; public GranularityExample(long[] array, int lo, int hi) { this.array = array; this.lo = lo; this.hi = hi; } @Override protected Long compute() { int size = hi - lo; // COARSE CHECK: Is task small enough to do sequentially? if (size <= SEQUENTIAL_THRESHOLD) { // Sequential execution - no more forking return sequentialSum(array, lo, hi); } // DECOMPOSITION: Split into two halves int mid = (lo + hi) / 2; // Fork left half GranularityExample left = new GranularityExample(array, lo, mid); left.fork(); // Compute right half directly (fork-once pattern) GranularityExample right = new GranularityExample(array, mid, hi); Long rightResult = right.compute(); // Join left and combine results Long leftResult = left.join(); return leftResult + rightResult; } /** * Sequential computation for small chunks. * Optimized for cache locality - sequential access pattern. */ private long sequentialSum(long[] arr, int start, int end) { long sum = 0; for (int i = start; i < end; i++) { sum += arr[i]; // If per-element work is expensive, threshold can be lower // If per-element work is trivial, threshold should be higher } return sum; } // ========================================== // ADAPTIVE GRANULARITY // ========================================== /** * Adaptive approach: consider available parallelism and work remaining. */ static class AdaptiveTask extends RecursiveTask<Long> { private static final int MIN_GRANULARITY = 1000; private final long[] array; private final int lo, hi; private final int surplusTasks; AdaptiveTask(long[] array, int lo, int hi, int surplusTasks) { this.array = array; this.lo = lo; this.hi = hi; this.surplusTasks = surplusTasks; } @Override protected Long compute() { int size = hi - lo; // Stop splitting when: // 1. Task is small enough, OR // 2. We have enough tasks queued (surplus) if (size <= MIN_GRANULARITY || surplusTasks <= 0) { return sequentialSum(array, lo, hi); } int mid = (lo + hi) / 2; // Reduce surplus as we create more tasks AdaptiveTask left = new AdaptiveTask( array, lo, mid, surplusTasks - 1); AdaptiveTask right = new AdaptiveTask( array, mid, hi, surplusTasks - 1); left.fork(); Long rightResult = right.compute(); Long leftResult = left.join(); return leftResult + rightResult; } private long sequentialSum(long[] arr, int start, int end) { long sum = 0; for (int i = start; i < end; i++) sum += arr[i]; return sum; } } // ========================================== // BENCHMARKING GRANULARITY // ========================================== public static void benchmarkThresholds() { long[] data = new long[10_000_000]; for (int i = 0; i < data.length; i++) data[i] = i; int[] thresholds = {100, 1000, 5000, 10000, 50000, 100000}; ForkJoinPool pool = ForkJoinPool.commonPool(); System.out.println("Threshold | Time (ms) | Tasks Created"); System.out.println("----------+-----------+--------------"); for (int threshold : thresholds) { // Reset task counter... long start = System.nanoTime(); // Would need to modify SEQUENTIAL_THRESHOLD dynamically // or create threshold-specific subclass Long result = pool.invoke( new GranularityExample(data, 0, data.length)); long elapsed = (System.nanoTime() - start) / 1_000_000; // Optimal threshold minimizes time System.out.printf("%9d | %9d | (measure)%n", threshold, elapsed); } }}The optimal threshold varies by workload. Benchmark with different values: start at array.length / (numCores * 4) and adjust. More work per element → lower threshold. Simpler work per element → higher threshold. When in doubt, 5,000-10,000 elements is a reasonable starting point for array operations on modern hardware.
Even with correct decomposition and appropriate granularity, parallel performance can suffer from load imbalance—when some workers finish early and sit idle while others are still working. Effective load balancing ensures all workers stay busy until the computation completes.
Sources of Load Imbalance:
| Strategy | Mechanism | Overhead | Balance Quality | Best For |
|---|---|---|---|---|
| Static/Block | Pre-divide into equal chunks | Minimal | Poor if work varies | Uniform work per element |
| Static/Cyclic | Round-robin assignment | Minimal | Good if work varies regularly | Predictable variation patterns |
| Dynamic/Chunked | Workers grab chunks from queue | Medium | Good | Moderate variation |
| Work-Stealing | Idle workers steal from busy | Low | Excellent | Unpredictable variation |
| Guided | Decreasing chunk sizes | Medium | Very good | Unknown variation |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
import java.util.concurrent.*;import java.util.concurrent.atomic.*; /** * Load balancing strategies for parallel decomposition. */public class LoadBalancing { // ========================================== // PROBLEM: Non-uniform work distribution // ========================================== /** * Example: Processing items where work varies dramatically. * Item 0 might take 1ms, item 999 might take 1000ms. */ static void nonUniformWorkProblem() { int[] items = new int[1000]; // Work per item: items[i] takes i milliseconds // Total work: 0+1+2+...+999 = ~500k ms = 500 seconds // If we split evenly: Worker 1 handles [0-499], Worker 2 handles [500-999] // Worker 1 work: 0+1+...+499 = 124,750 ms // Worker 2 work: 500+501+...+999 = 374,750 ms // Worker 1 finishes 3x earlier and idles! } // ========================================== // STATIC CYCLIC DISTRIBUTION // ========================================== /** * Cyclic distribution: Round-robin assignment. * Worker 0: items 0,4,8,... Worker 1: items 1,5,9,... etc. * Balances if variation is regular. */ static void cyclicDistribution(int[] items, int numWorkers) { ExecutorService executor = Executors.newFixedThreadPool(numWorkers); for (int worker = 0; worker < numWorkers; worker++) { final int workerId = worker; executor.submit(() -> { // Process items workerId, workerId+numWorkers, ... for (int i = workerId; i < items.length; i += numWorkers) { processItem(items[i]); } }); } executor.shutdown(); } // ========================================== // DYNAMIC CHUNKED DISTRIBUTION // ========================================== /** * Dynamic chunked: Workers grab chunks from shared counter. * Good balance but has synchronization overhead. */ static void dynamicChunked(int[] items, int numWorkers, int chunkSize) { AtomicInteger nextChunk = new AtomicInteger(0); ExecutorService executor = Executors.newFixedThreadPool(numWorkers); for (int worker = 0; worker < numWorkers; worker++) { executor.submit(() -> { while (true) { // Atomically grab next chunk int start = nextChunk.getAndAdd(chunkSize); if (start >= items.length) break; int end = Math.min(start + chunkSize, items.length); for (int i = start; i < end; i++) { processItem(items[i]); } } }); } executor.shutdown(); } // ========================================== // WORK-STEALING: Fork-Join's Built-in Solution // ========================================== /** * Work-stealing automatically balances load. * Each worker has a deque; idle workers steal from busy workers. */ static class WorkStealingSum extends RecursiveTask<Long> { private static final int THRESHOLD = 1000; private final long[] array; private final int lo, hi; WorkStealingSum(long[] array, int lo, int hi) { this.array = array; this.lo = lo; this.hi = hi; } @Override protected Long compute() { if (hi - lo <= THRESHOLD) { return sequentialCompute(); } int mid = (lo + hi) / 2; WorkStealingSum left = new WorkStealingSum(array, lo, mid); WorkStealingSum right = new WorkStealingSum(array, mid, hi); // Fork creates task in local deque left.fork(); // While 'left' might sit in deque, other workers can STEAL it // This is the work-stealing magic Long rightResult = right.compute(); Long leftResult = left.join(); return leftResult + rightResult; } private long sequentialCompute() { // Variable work simulation long sum = 0; for (int i = lo; i < hi; i++) { sum += expensiveOp(array[i]); // Time varies per value } return sum; } private long expensiveOp(long value) { // Simulate variable work: more work for larger values long result = value; for (int i = 0; i < value % 100; i++) { result = result * 31 + i; } return result; } } // ========================================== // GUIDED SELF-SCHEDULING // ========================================== /** * Guided scheduling: chunk size decreases as work progresses. * Large chunks initially (low overhead), small chunks at end (good balance). */ static void guidedScheduling(int[] items, int numWorkers) { AtomicInteger remaining = new AtomicInteger(items.length); AtomicInteger currentIndex = new AtomicInteger(0); ExecutorService executor = Executors.newFixedThreadPool(numWorkers); for (int worker = 0; worker < numWorkers; worker++) { executor.submit(() -> { while (true) { int rem = remaining.get(); if (rem <= 0) break; // Chunk size proportional to remaining work divided by workers // Minimum chunk size of 1 int chunkSize = Math.max(1, rem / (numWorkers * 2)); int start = currentIndex.getAndAdd(chunkSize); int actualRemaining = remaining.addAndGet(-chunkSize); if (start >= items.length) break; int end = Math.min(start + chunkSize, items.length); for (int i = start; i < end; i++) { processItem(items[i]); } } }); } executor.shutdown(); } private static void processItem(int item) { // Simulate work proportional to item value try { Thread.sleep(item % 10); } catch (InterruptedException e) {} }}For most fork-join parallel programs, work-stealing (built into ForkJoinPool, Intel TBB, Cilk) provides excellent load balancing with low overhead. Use static distribution only when work is perfectly uniform AND you need to minimize synchronization overhead (e.g., SIMD/GPU). When in doubt, use work-stealing.
Certain decomposition patterns appear repeatedly in parallel programming. Recognizing these patterns accelerates algorithm design and leverages well-tested implementation strategies.
Core Parallel Patterns:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
import java.util.concurrent.*;import java.util.stream.*;import java.util.*; /** * Implementation examples of common decomposition patterns. */public class DecompositionPatterns { // ========================================== // PATTERN 1: MAP (Embarrassingly Parallel) // ========================================== /** * Map pattern: independent transformation of each element. */ static double[] parallelMap(double[] input, DoubleUnaryOperator f) { return Arrays.stream(input) .parallel() .map(f) .toArray(); } // Fork-Join version for illustration static class MapTask extends RecursiveAction { private static final int THRESHOLD = 10000; private final double[] input, output; private final int lo, hi; private final DoubleUnaryOperator f; MapTask(double[] input, double[] output, int lo, int hi, DoubleUnaryOperator f) { this.input = input; this.output = output; this.lo = lo; this.hi = hi; this.f = f; } @Override protected void compute() { if (hi - lo <= THRESHOLD) { for (int i = lo; i < hi; i++) { output[i] = f.applyAsDouble(input[i]); } } else { int mid = (lo + hi) / 2; invokeAll( new MapTask(input, output, lo, mid, f), new MapTask(input, output, mid, hi, f) ); } } } // ========================================== // PATTERN 2: REDUCE // ========================================== /** * Reduce pattern: combine elements with associative operation. */ static class ReduceTask extends RecursiveTask<Long> { private static final int THRESHOLD = 10000; private final long[] array; private final int lo, hi; private final LongBinaryOperator combine; private final long identity; ReduceTask(long[] array, int lo, int hi, long identity, LongBinaryOperator combine) { this.array = array; this.lo = lo; this.hi = hi; this.identity = identity; this.combine = combine; } @Override protected Long compute() { if (hi - lo <= THRESHOLD) { long result = identity; for (int i = lo; i < hi; i++) { result = combine.applyAsLong(result, array[i]); } return result; } int mid = (lo + hi) / 2; ReduceTask left = new ReduceTask(array, lo, mid, identity, combine); ReduceTask right = new ReduceTask(array, mid, hi, identity, combine); left.fork(); Long rightResult = right.compute(); Long leftResult = left.join(); return combine.applyAsLong(leftResult, rightResult); } } static long parallelSum(long[] array) { return ForkJoinPool.commonPool().invoke( new ReduceTask(array, 0, array.length, 0L, Long::sum)); } static long parallelMax(long[] array) { return ForkJoinPool.commonPool().invoke( new ReduceTask(array, 0, array.length, Long.MIN_VALUE, Long::max)); } // ========================================== // PATTERN 3: DIVIDE AND CONQUER // ========================================== /** * Divide-and-conquer: recursive subdivision into independent subproblems. * Classic example: parallel merge sort. */ static class ParallelMergeSort extends RecursiveAction { private static final int THRESHOLD = 4096; private final int[] array; private final int lo, hi; private final int[] buffer; ParallelMergeSort(int[] array, int lo, int hi, int[] buffer) { this.array = array; this.lo = lo; this.hi = hi; this.buffer = buffer; } @Override protected void compute() { if (hi - lo <= THRESHOLD) { Arrays.sort(array, lo, hi); // Sequential fallback return; } int mid = (lo + hi) / 2; // DIVIDE: Create subproblems ParallelMergeSort left = new ParallelMergeSort(array, lo, mid, buffer); ParallelMergeSort right = new ParallelMergeSort(array, mid, hi, buffer); // CONQUER: Solve subproblems in parallel invokeAll(left, right); // COMBINE: Merge sorted halves merge(array, lo, mid, hi, buffer); } private void merge(int[] arr, int lo, int mid, int hi, int[] buf) { System.arraycopy(arr, lo, buf, lo, hi - lo); int i = lo, j = mid, k = lo; while (i < mid && j < hi) { arr[k++] = (buf[i] <= buf[j]) ? buf[i++] : buf[j++]; } while (i < mid) arr[k++] = buf[i++]; while (j < hi) arr[k++] = buf[j++]; } } // ========================================== // PATTERN 4: STENCIL // ========================================== /** * Stencil pattern: each output depends on neighborhood of inputs. * Exercise: avoid data races at tile boundaries. */ static void parallelStencil(double[][] input, double[][] output, double[][] kernel) { int height = input.length; int width = input[0].length; int kRadius = kernel.length / 2; // Process rows in parallel (each row independent if reading input) IntStream.range(kRadius, height - kRadius).parallel().forEach(y -> { for (int x = kRadius; x < width - kRadius; x++) { double sum = 0; for (int ky = -kRadius; ky <= kRadius; ky++) { for (int kx = -kRadius; kx <= kRadius; kx++) { sum += input[y + ky][x + kx] * kernel[ky + kRadius][kx + kRadius]; } } output[y][x] = sum; } }); }}Complex computations with multiple dependencies can be analyzed using Directed Acyclic Graphs (DAGs). Each node represents a task, and edges represent dependencies. This analysis reveals the critical path (longest dependency chain) and the available parallelism.
Key Metrics:
Brent's Law:
$$T_P \leq \frac{T_1}{P} + T_\infty$$
This bounds the execution time on P processors: you can't be faster than either the sequential work divided by processors OR the critical path.
Interpreting the DAG:
In the example above:
Critical Path: B → C → E → F (4 + 3 + 2 + 1 = 10ms)
Even with infinite processors, we can't complete faster than 10ms because this chain is entirely sequential.
Practical Use of DAG Analysis:
If analysis shows parallelism < number of cores, you have two choices: (1) Restructure the algorithm to expose more parallelism (e.g., parallel prefix instead of sequential scan), or (2) Accept the limit and optimize the sequential portions. Adding more cores won't help if they have nothing to do.
Task decomposition is the foundation skill for parallel programming. Before any forking or joining, you must understand how to break work into parallel pieces effectively.
Let's consolidate the key insights:
What's Next:
The theoretical foundation is set. The next page explores the Java Fork/Join Framework—a practical implementation of fork-join concepts that you can use to build high-performance parallel applications. We'll see how the concepts of fork, join, task decomposition, work-stealing, and sequential thresholds come together in production-quality code.
You now understand how to identify parallelizable work, choose between data and task parallelism, select appropriate granularity, balance load effectively, and analyze dependency graphs. With these skills, you can decompose complex computations for efficient parallel execution. Next, we'll apply these concepts in the Java Fork/Join Framework.