Loading content...
Consider a real-time bidding platform processing 10 million ad impressions per second. For each advertisement campaign, you need to track the top 1,000 highest-value placements. With 100,000 active campaigns, that's 100 million elements to track across all Top-K heaps—and you have exactly 16GB of RAM available.
Or imagine a distributed log aggregation system where each of 5,000 servers tracks its own Top-100 errors. The central aggregator must merge these results every second. How do you minimize network bandwidth while still maintaining accuracy?
These scenarios demand more than the basic Top-K pattern. They require space-efficient K element tracking—techniques that minimize memory footprint while maintaining the correctness guarantees we need.
In this page, we'll explore how to squeeze maximum efficiency from bounded data structures, implement memory-aware eviction policies, and design systems that gracefully handle memory constraints.
By the end of this page, you will understand: (1) why O(K) space isn't always "constant enough," (2) techniques for reducing per-element memory overhead, (3) how to implement memory-bounded priority queues, (4) strategies for handling dynamic updates efficiently, and (5) trade-offs between exactness and space efficiency.
We established that the heap-based Top-K approach uses O(K) space. This is a dramatic improvement over O(n) for storing all elements. But "O(K)" hides important constant factors that matter in practice.
Breaking Down Memory Usage:
Consider a min-heap storing K integers in a typical 64-bit environment:
Memory per element = sizeof(int) + heap overhead
= 4 bytes (int) + ~8 bytes (heap node metadata)
= ~12 bytes per element
For K = 1,000: 12,000 bytes ≈ 12 KB
For K = 1,000,000: 12,000,000 bytes ≈ 12 MB
This seems reasonable. But now consider tracking Top-K across M different categories:
Total memory = M × K × 12 bytes
M = 100,000 categories, K = 1,000 elements each:
Total = 100,000 × 1,000 × 12 = 1.2 GB
Suddenly, "O(K)" doesn't feel so small anymore.
| Categories (M) | K per Category | Per-Element Size | Total Memory |
|---|---|---|---|
| 1,000 | 100 | 12 bytes | 1.2 MB |
| 10,000 | 100 | 12 bytes | 12 MB |
| 100,000 | 100 | 12 bytes | 120 MB |
| 100,000 | 1,000 | 12 bytes | 1.2 GB |
| 1,000,000 | 1,000 | 12 bytes | 12 GB |
In multi-tenant or multi-category systems, the total memory is M × K × (element size). Even with small K, a large number of categories M can exhaust available memory. This is why per-element memory optimization matters.
Object Overhead in Managed Languages:
In languages like Java or Python, the overhead is even worse:
Java Integer object:
- Object header: 12-16 bytes
- int value: 4 bytes
- Padding: 0-4 bytes
- Total: ~20 bytes for a single int!
Java heap node with references:
- Integer object: 20 bytes
- Left/right child references: 16 bytes
- Parent reference: 8 bytes
- Total: ~44 bytes per element
This "object tax" can make naive implementations 4-10x larger than the raw data would suggest.
The first line of defense against memory bloat is reducing per-element overhead. Here are proven techniques:
Technique 1: Array-Based Heap (Implicit Structure)
Instead of node objects with explicit pointers, use an array where parent-child relationships are implicit:
Parent of index i: (i - 1) / 2
Left child of index i: 2i + 1
Right child of index i: 2i + 2
This eliminates pointer overhead entirely:
| Implementation | Memory per Element | For K=1000 |
|---|---|---|
| Node-based (3 pointers) | ~28 bytes | 28 KB |
| Array-based | 4 bytes | 4 KB |
| Improvement | 7x | 24 KB saved |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
from array import arrayfrom typing import Optional, List class CompactMinHeap: """ Memory-efficient min-heap using Python's array module. Uses 'l' (long) typecode for signed integers. Memory usage: ~8 bytes per element (vs ~56 bytes for list of objects). This implementation is ~7x more memory-efficient than using a list of Python integers with heapq. """ def __init__(self, capacity: int): # Pre-allocate fixed-size array self._data = array('l', [0] * capacity) self._size = 0 self._capacity = capacity @property def size(self) -> int: return self._size def is_full(self) -> bool: return self._size >= self._capacity def peek(self) -> Optional[int]: if self._size == 0: return None return self._data[0] def push(self, value: int) -> Optional[int]: """ Push value. If full, evict minimum and push only if value is larger. Returns evicted value if any, None otherwise. """ if self._size < self._capacity: self._data[self._size] = value self._size += 1 self._bubble_up(self._size - 1) return None elif value > self._data[0]: evicted = self._data[0] self._data[0] = value self._bubble_down(0) return evicted return None def _bubble_up(self, index: int) -> None: while index > 0: parent = (index - 1) // 2 if self._data[parent] <= self._data[index]: break self._data[parent], self._data[index] = \ self._data[index], self._data[parent] index = parent def _bubble_down(self, index: int) -> None: while True: smallest = index left = 2 * index + 1 right = 2 * index + 2 if left < self._size and self._data[left] < self._data[smallest]: smallest = left if right < self._size and self._data[right] < self._data[smallest]: smallest = right if smallest == index: break self._data[index], self._data[smallest] = \ self._data[smallest], self._data[index] index = smallest def to_list(self) -> List[int]: return list(self._data[:self._size]) # Memory comparisonimport sys def compare_memory(): K = 10000 # Standard Python list with heapq standard_heap = list(range(K)) # Compact array-based heap compact_heap = CompactMinHeap(K) for i in range(K): compact_heap.push(i) print(f"Standard heap size: {sys.getsizeof(standard_heap)} bytes") print(f"Compact heap size: {compact_heap._data.buffer_info()[1] * 8} bytes") # Output shows ~6-8x memory reduction compare_memory()Technique 2: Value Encoding
If your values have limited range, encode them more compactly:
# For values 0-65535, use uint16 instead of int64
from array import array
# Standard: 8 bytes per element
standard = array('q', range(1000)) # 8000 bytes
# Compact: 2 bytes per element
compact = array('H', range(1000)) # 2000 bytes (4x smaller)
Technique 3: Index Indirection
When storing complex objects, store only indices in the heap:
class TopKProducts:
def __init__(self, products: List[Product], k: int):
self.products = products # Full product data
self.heap = [] # Store only (score, index) pairs
for i, p in enumerate(products):
if len(self.heap) < k:
heapq.heappush(self.heap, (p.score, i))
elif p.score > self.heap[0][0]:
heapq.heapreplace(self.heap, (p.score, i))
def get_top_k(self) -> List[Product]:
# Dereference indices to get actual products
return [self.products[i] for _, i in self.heap]
This stores only 16 bytes per heap entry (float + int) instead of full Product objects.
The core abstraction for space-efficient Top-K tracking is the Bounded Priority Queue (BPQ)—a priority queue with a maximum capacity that automatically evicts the lowest-priority element when full.
Interface Definition:
BoundedPriorityQueue<T>:
constructor(capacity: int, comparator: (T, T) -> int)
insert(element: T) -> Optional<T> // Returns evicted element, if any
peek() -> Optional<T> // View threshold element
extractMin() -> Optional<T> // Remove and return minimum
size() -> int
isFull() -> bool
toList() -> List<T>
Key Properties:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
from heapq import heappush, heapreplacefrom typing import TypeVar, Generic, Optional, List, Callablefrom dataclasses import dataclass T = TypeVar('T') @dataclassclass HeapEntry(Generic[T]): """Wrapper to make any type comparable by a key function.""" key: float value: T def __lt__(self, other: 'HeapEntry') -> bool: return self.key < other.key class BoundedPriorityQueue(Generic[T]): """ A priority queue with bounded capacity. Maintains the top K elements by automatically evicting the lowest-priority element when capacity is exceeded. Use Cases: - Real-time Top-K tracking - Memory-bounded result aggregation - Streaming analytics Time Complexity: - insert: O(log K) - peek: O(1) - extractMin: O(log K) Space Complexity: O(K) """ def __init__( self, capacity: int, key_func: Callable[[T], float] = lambda x: x ): """ Initialize bounded priority queue. Args: capacity: Maximum number of elements to retain key_func: Function to extract comparison key from elements """ if capacity <= 0: raise ValueError("Capacity must be positive") self._capacity = capacity self._key_func = key_func self._heap: List[HeapEntry[T]] = [] @property def capacity(self) -> int: return self._capacity @property def size(self) -> int: return len(self._heap) def is_full(self) -> bool: return len(self._heap) >= self._capacity def is_empty(self) -> bool: return len(self._heap) == 0 def peek(self) -> Optional[T]: """Return the minimum element without removing it.""" if self._heap: return self._heap[0].value return None def peek_key(self) -> Optional[float]: """Return the minimum key (threshold for admission).""" if self._heap: return self._heap[0].key return None def insert(self, element: T) -> Optional[T]: """ Insert element into the queue. If queue is full and element has higher priority than minimum, evicts minimum and inserts new element. Returns: Evicted element if eviction occurred, None otherwise """ key = self._key_func(element) entry = HeapEntry(key, element) if len(self._heap) < self._capacity: heappush(self._heap, entry) return None elif key > self._heap[0].key: evicted = heapreplace(self._heap, entry) return evicted.value return None # Element didn't qualify def would_qualify(self, element: T) -> bool: """Check if element would be admitted without modifying queue.""" if not self.is_full(): return True key = self._key_func(element) return key > self._heap[0].key def to_list(self) -> List[T]: """Return all elements (unordered).""" return [entry.value for entry in self._heap] def to_sorted_list(self, reverse: bool = True) -> List[T]: """Return all elements in sorted order.""" sorted_entries = sorted(self._heap, reverse=reverse) return [entry.value for entry in sorted_entries] def clear(self) -> None: """Remove all elements from the queue.""" self._heap.clear() def threshold(self) -> Optional[float]: """ Return current admission threshold. Elements with key > threshold will be admitted. Returns None if queue is not full. """ if self.is_full(): return self._heap[0].key return None # Example: Product recommendation system@dataclassclass Product: id: str name: str relevance_score: float def demo_product_recommendations(): # Track top 3 products by relevance top_products = BoundedPriorityQueue[Product]( capacity=3, key_func=lambda p: p.relevance_score ) products = [ Product("p1", "Wireless Mouse", 0.85), Product("p2", "USB Cable", 0.45), Product("p3", "Monitor Stand", 0.72), Product("p4", "Keyboard", 0.91), Product("p5", "Webcam", 0.68), Product("p6", "Headphones", 0.88), ] for product in products: evicted = top_products.insert(product) if evicted: print(f"Admitted {product.name} (score={product.relevance_score}), " f"evicted {evicted.name} (score={evicted.relevance_score})") else: print(f"Admitted {product.name} (score={product.relevance_score})") print("\nTop 3 products:") for product in top_products.to_sorted_list(): print(f" {product.name}: {product.relevance_score}") demo_product_recommendations()The BPQ's peek() method returns the current admission threshold—the minimum value that an element must exceed to enter the Top-K. This is useful for early rejection: if you can quickly compute a lower bound on an element's score and it's below the threshold, skip the full computation.
Real-world Top-K systems often need to handle updates to existing elements, not just insertions of new ones. Consider:
Standard heaps don't support efficient updates—changing an element's priority requires O(K) to find it, then O(log K) to restore the heap property. We need smarter approaches.
Approach 1: Indexed Priority Queue
Maintain a hash map from element ID to heap index. This enables O(1) lookup followed by O(log K) update:
IndexedPriorityQueue:
heap: array of (priority, element_id)
index_map: dict of element_id -> heap_index
update_priority(element_id, new_priority):
idx = index_map[element_id] // O(1)
old_priority = heap[idx].priority
heap[idx].priority = new_priority
if new_priority > old_priority:
bubble_down(idx) // O(log K)
else:
bubble_up(idx) // O(log K)
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
from typing import Dict, List, Tuple, Optional, TypeVar, Genericfrom dataclasses import dataclass T = TypeVar('T') class IndexedMinPQ(Generic[T]): """ Indexed Min Priority Queue for efficient updates. Supports: - insert(key, priority): O(log n) - update_priority(key, new_priority): O(log n) - delete(key): O(log n) - peek_min(): O(1) - extract_min(): O(log n) - contains(key): O(1) Perfect for: - Leaderboards with score updates - Dijkstra's algorithm - Dynamic Top-K tracking """ def __init__(self, capacity: int = None): self._heap: List[Tuple[float, T]] = [] # (priority, key) self._index: Dict[T, int] = {} # key -> heap index self._capacity = capacity @property def size(self) -> int: return len(self._heap) def is_empty(self) -> bool: return len(self._heap) == 0 def is_full(self) -> bool: return self._capacity is not None and len(self._heap) >= self._capacity def contains(self, key: T) -> bool: return key in self._index def get_priority(self, key: T) -> Optional[float]: if key not in self._index: return None idx = self._index[key] return self._heap[idx][0] def peek_min(self) -> Optional[Tuple[T, float]]: if self._heap: priority, key = self._heap[0] return (key, priority) return None def insert(self, key: T, priority: float) -> Optional[Tuple[T, float]]: """ Insert element with given priority. If at capacity, evicts minimum if new priority is higher. Returns evicted (key, priority) or None. """ if key in self._index: # Key exists, update instead self.update_priority(key, priority) return None if self._capacity is not None and len(self._heap) >= self._capacity: # At capacity - check if new element qualifies if priority > self._heap[0][0]: evicted = self.extract_min() self._insert_new(key, priority) return evicted return None self._insert_new(key, priority) return None def _insert_new(self, key: T, priority: float) -> None: idx = len(self._heap) self._heap.append((priority, key)) self._index[key] = idx self._bubble_up(idx) def update_priority(self, key: T, new_priority: float) -> bool: """ Update priority for existing key. Returns True if key existed and was updated. """ if key not in self._index: return False idx = self._index[key] old_priority = self._heap[idx][0] self._heap[idx] = (new_priority, key) if new_priority < old_priority: self._bubble_up(idx) else: self._bubble_down(idx) return True def extract_min(self) -> Optional[Tuple[T, float]]: if not self._heap: return None min_priority, min_key = self._heap[0] del self._index[min_key] if len(self._heap) == 1: self._heap.pop() else: # Move last element to root and bubble down last_priority, last_key = self._heap.pop() self._heap[0] = (last_priority, last_key) self._index[last_key] = 0 self._bubble_down(0) return (min_key, min_priority) def delete(self, key: T) -> bool: """Delete element by key. Returns True if element existed.""" if key not in self._index: return False idx = self._index[key] del self._index[key] if idx == len(self._heap) - 1: self._heap.pop() else: last_priority, last_key = self._heap.pop() old_priority = self._heap[idx][0] self._heap[idx] = (last_priority, last_key) self._index[last_key] = idx if last_priority < old_priority: self._bubble_up(idx) else: self._bubble_down(idx) return True def _bubble_up(self, idx: int) -> None: while idx > 0: parent = (idx - 1) // 2 if self._heap[parent][0] <= self._heap[idx][0]: break self._swap(idx, parent) idx = parent def _bubble_down(self, idx: int) -> None: while True: smallest = idx left = 2 * idx + 1 right = 2 * idx + 2 if left < len(self._heap) and \ self._heap[left][0] < self._heap[smallest][0]: smallest = left if right < len(self._heap) and \ self._heap[right][0] < self._heap[smallest][0]: smallest = right if smallest == idx: break self._swap(idx, smallest) idx = smallest def _swap(self, i: int, j: int) -> None: # Update index map _, key_i = self._heap[i] _, key_j = self._heap[j] self._index[key_i] = j self._index[key_j] = i # Swap in heap self._heap[i], self._heap[j] = self._heap[j], self._heap[i] def to_list(self) -> List[Tuple[T, float]]: return [(key, priority) for priority, key in self._heap] # Demo: Real-time game leaderboarddef demo_leaderboard(): # Track top 5 players leaderboard = IndexedMinPQ[str](capacity=5) # Initial scores scores = [ ("Alice", 1200), ("Bob", 1450), ("Charlie", 980), ("Diana", 1100), ("Eve", 1380), ("Frank", 1520) ] print("Adding initial players...") for name, score in scores: evicted = leaderboard.insert(name, score) if evicted: print(f" {name} (score={score}) entered, " f"{evicted[0]} (score={evicted[1]}) evicted") print("\nCurrent Top 5:") for name, score in sorted(leaderboard.to_list(), key=lambda x: -x[1]): print(f" {name}: {score}") # Score updates print("\nUpdating scores...") leaderboard.update_priority("Alice", 1550) # Alice improves! print(" Alice's new score: 1550") print("\nUpdated Top 5:") for name, score in sorted(leaderboard.to_list(), key=lambda x: -x[1]): print(f" {name}: {score}") demo_leaderboard()The indexed priority queue adds O(K) space for the index map, effectively doubling memory usage. This is worthwhile when updates are frequent. For insert-only workloads, the simpler non-indexed heap is more memory-efficient.
When deletions are infrequent and update complexity is critical, the lazy deletion pattern offers an alternative to indexed heaps.
The Idea: Instead of immediately removing deleted elements, mark them as deleted. Clean up lazily when they reach the heap root.
LazyDeletionHeap:
heap: standard min-heap
deleted: set of element IDs
delete(element_id):
deleted.add(element_id) // O(1)
extract_min():
while heap is not empty:
min_element = heap.extract_min()
if min_element.id not in deleted:
return min_element
deleted.remove(min_element.id) // Cleanup
return null
Advantages:
Disadvantages:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
import heapqfrom typing import List, Set, Optional, Tuple, TypeVar, Genericfrom dataclasses import dataclass, field T = TypeVar('T') @dataclass(order=True)class LazyEntry(Generic[T]): """Entry for lazy deletion heap.""" priority: float element_id: str = field(compare=False) data: T = field(compare=False) class LazyDeletionTopK(Generic[T]): """ Top-K tracker with O(1) deletions using lazy deletion. Ideal when: - Deletions are less frequent than insertions - Deletion speed is more important than memory - You can tolerate temporary overcounting Time Complexity: - insert: O(log n) where n is current heap size - delete: O(1) - extract_min: O(log n) amortized (may skip ghosts) - get_top_k: O(k log n) Space Complexity: O(n) where n includes ghost entries """ def __init__(self, k: int): self.k = k self._heap: List[LazyEntry[T]] = [] self._deleted: Set[str] = set() self._active_count = 0 # Track non-deleted entries @property def size(self) -> int: """Number of active (non-deleted) entries.""" return self._active_count def insert(self, element_id: str, priority: float, data: T) -> None: """ Insert new element or update existing one. For updates, we insert new entry and mark old one deleted. """ if element_id in self._deleted: # Remove from deleted set (reactivating the ID) self._deleted.discard(element_id) else: self._active_count += 1 entry = LazyEntry(priority, element_id, data) heapq.heappush(self._heap, entry) # Enforce capacity by evicting minimum active entry self._enforce_capacity() def delete(self, element_id: str) -> bool: """ Mark element as deleted. O(1) operation. Returns True if element was active. """ # We don't check if element exists in heap - just mark it if element_id not in self._deleted: self._deleted.add(element_id) self._active_count -= 1 return True return False def update(self, element_id: str, new_priority: float, data: T) -> None: """ Update priority for existing element. Implemented by inserting new entry and lazy-deleting old one. """ # Mark old entry as deleted self._deleted.add(element_id) # Insert new entry with same ID entry = LazyEntry(new_priority, element_id, data) heapq.heappush(self._heap, entry) # Note: active_count unchanged (one deleted, one added) def peek_min(self) -> Optional[Tuple[str, float, T]]: """Return minimum active element without removing it.""" self._cleanup_ghosts() if self._heap: entry = self._heap[0] return (entry.element_id, entry.priority, entry.data) return None def _cleanup_ghosts(self) -> None: """Remove deleted entries from heap root.""" while self._heap and self._heap[0].element_id in self._deleted: entry = heapq.heappop(self._heap) self._deleted.discard(entry.element_id) def _enforce_capacity(self) -> None: """ Evict entries until we have at most K active elements. """ while self._active_count > self.k: self._cleanup_ghosts() if self._heap: evicted = heapq.heappop(self._heap) if evicted.element_id not in self._deleted: self._active_count -= 1 def get_top_k(self) -> List[Tuple[str, float, T]]: """ Return all active elements in the Top-K. """ self._cleanup_ghosts() results = [] for entry in self._heap: if entry.element_id not in self._deleted: results.append((entry.element_id, entry.priority, entry.data)) return sorted(results, key=lambda x: -x[1])[:self.k] def compact(self) -> int: """ Rebuild heap without ghost entries. Returns number of ghosts removed. """ active_entries = [ e for e in self._heap if e.element_id not in self._deleted ] ghosts_removed = len(self._heap) - len(active_entries) self._heap = active_entries heapq.heapify(self._heap) self._deleted.clear() return ghosts_removed # Demo: Server monitoring with updatesdef demo_server_monitoring(): # Track top 3 servers by CPU usage top_cpu = LazyDeletionTopK[dict](k=3) # Initial readings servers = [ ("server-1", 45.2, {"region": "us-east"}), ("server-2", 78.5, {"region": "us-west"}), ("server-3", 23.1, {"region": "eu-west"}), ("server-4", 91.0, {"region": "ap-south"}), ("server-5", 67.3, {"region": "us-east"}), ] print("Initial readings:") for sid, cpu, meta in servers: top_cpu.insert(sid, cpu, meta) print(f" {sid}: {cpu}%") print(f"\nTop 3 by CPU:") for sid, cpu, meta in top_cpu.get_top_k(): print(f" {sid}: {cpu}% ({meta['region']})") # Server goes offline print("\nserver-4 goes offline (deleted)...") top_cpu.delete("server-4") # CPU updates print("server-2 CPU drops to 35%...") top_cpu.update("server-2", 35.0, {"region": "us-west"}) print(f"\nUpdated Top 3:") for sid, cpu, meta in top_cpu.get_top_k(): print(f" {sid}: {cpu}% ({meta['region']})") demo_server_monitoring()When operating under strict memory budgets, several strategic approaches help maintain efficiency:
Strategy 1: Periodic Compaction
For lazy deletion heaps, schedule periodic cleanup:
class CompactingTopK:
GHOST_RATIO_THRESHOLD = 0.3 # Compact when 30%+ are ghosts
def maybe_compact(self):
ghost_ratio = len(self._deleted) / max(len(self._heap), 1)
if ghost_ratio > self.GHOST_RATIO_THRESHOLD:
self.compact()
Strategy 2: Approximate Top-K
When exact Top-K isn't required, use probabilistic structures:
These trade accuracy for guaranteed space bounds.
| Strategy | Space | Accuracy | Updates | Best For |
|---|---|---|---|---|
| Exact BPQ | O(K) | Perfect | O(log K) | Small K, accuracy critical |
| Indexed BPQ | O(2K) | Perfect | O(log K) | Frequent updates |
| Lazy Deletion | O(K+D)* | Perfect | O(1) delete | Rare deletes, fast updates |
| Approximate | O(K) | ~90-99% | O(1) | Massive scale, approximate OK |
*D = number of pending deletions; can grow unbounded without compaction
Strategy 3: Hierarchical Aggregation
For distributed systems, use a two-level approach:
Level 1: Each node maintains local Top-K₁
Level 2: Aggregator merges Top-K₁ from all nodes → Global Top-K₂
Requirements:
- K₁ ≥ K₂ (local must be at least as large as global)
- Higher K₁ improves accuracy but increases network traffic
- K₁ = K₂ × 2 is often a good balance
This bounds memory at each node while preserving global accuracy.
When designing a system, work backwards from memory budget:
Available Memory = M bytes
Per-element overhead = E bytes
Number of categories = C
Max K per category = M / (C × E)
If this K is too small, consider hierarchical aggregation or approximate algorithms.
We've explored techniques for minimizing memory usage while maintaining Top-K tracking capabilities. Let's consolidate:
What's Next:
The next page explores stream processing with heaps — how to maintain Top-K over infinite data streams where you can't store all elements, including sliding windows and time-decayed rankings.
You now understand how to optimize memory usage for Top-K tracking in memory-constrained environments. These techniques are essential for building production systems that handle millions of elements across thousands of categories.