Loading content...
The kernel function is the heart of Kernel PCA. It defines the implicit feature space, determines what nonlinear structures can be discovered, and ultimately controls whether KPCA succeeds or fails on a given dataset. Yet kernel selection is often treated as an afterthought—practitioners default to the RBF kernel with a hastily-chosen bandwidth, hoping for the best.
This approach is inadequate for serious applications. Different kernels encode fundamentally different assumptions about data structure. The polynomial kernel captures polynomial relationships; the RBF kernel measures local similarity; string and graph kernels handle structured data. Choosing wisely requires understanding what each kernel does, how its parameters affect behavior, and how to evaluate whether a kernel is appropriate for your data.
This page provides a comprehensive guide to kernel selection for KPCA. We'll examine common kernel families, understand their properties and parameter sensitivities, explore methods for kernel parameter tuning, and develop practical strategies for kernel selection in real applications.
By the end of this page, you will understand the properties and use cases of major kernel families, how kernel parameters affect KPCA behavior, methods for tuning kernel parameters, diagnostic techniques for evaluating kernel appropriateness, and practical strategies for kernel selection in real applications.
Let's survey the most commonly used kernels for KPCA, understanding what each one does and when it's appropriate.
1. Linear Kernel $$k(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$$
The simplest kernel—equivalent to standard PCA. The feature space equals the input space: $\phi(\mathbf{x}) = \mathbf{x}$.
Use when: Data relationships are approximately linear, or as a baseline for comparison.
Parameters: None.
2. Polynomial Kernel $$k(\mathbf{x}, \mathbf{y}) = (\gamma \mathbf{x}^T \mathbf{y} + c)^d$$
Captures polynomial interactions up to degree $d$. The feature space includes all monomials up to degree $d$.
Use when: Polynomial relationships are expected (e.g., physics-based models, polynomial regression settings).
Parameters:
3. Radial Basis Function (RBF) / Gaussian Kernel $$k(\mathbf{x}, \mathbf{y}) = \exp\left(-\gamma |\mathbf{x} - \mathbf{y}|^2\right) = \exp\left(-\frac{|\mathbf{x} - \mathbf{y}|^2}{2\sigma^2}\right)$$
Measures local similarity—kernel value decays with distance. Corresponds to an infinite-dimensional feature space.
Use when: No prior knowledge about relationship form; general-purpose nonlinear DR; data has local structure.
Parameters:
The RBF kernel is often the default choice because it's a universal approximator—with infinite feature space dimension, it can represent any continuous function. However, this flexibility comes with sensitivity to the bandwidth parameter, which must be tuned carefully.
4. Laplacian Kernel $$k(\mathbf{x}, \mathbf{y}) = \exp\left(-\gamma |\mathbf{x} - \mathbf{y}|_1\right)$$
Similar to RBF but uses L1 distance. More robust to outliers, produces "spikier" similarity functions.
Use when: Data may contain outliers; sparse features are relevant.
Parameters: $\gamma$ (bandwidth)
5. Sigmoid Kernel $$k(\mathbf{x}, \mathbf{y}) = \tanh(\gamma \mathbf{x}^T \mathbf{y} + c)$$
Originally motivated by neural network connections. Not always positive semi-definite (only for certain parameter ranges).
Use when: Neural network analogy is relevant (rare in KPCA).
Parameters: $\gamma$ (scale), $c$ (offset). Caution: May not be a valid kernel for all parameter values.
6. Cosine Kernel $$k(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^T \mathbf{y}}{|\mathbf{x}| |\mathbf{y}|}$$
Measures angular similarity, ignoring magnitude. Equivalent to linear kernel on normalized data.
Use when: Only direction matters (text, proportions, directional data).
Parameters: None.
7. Specialized Kernels
| Kernel | Feature Space Dim | Parameters | Best For |
|---|---|---|---|
| Linear | $d$ (input dim) | None | Linear data, baseline |
| Polynomial (d) | $O(d^p)$ | degree $d$, $\gamma$, $c$ | Polynomial relationships |
| RBF | $\infty$ | $\gamma$ (bandwidth) | General nonlinear, local structure |
| Laplacian | $\infty$ | $\gamma$ | Outlier robustness, sparse features |
| Cosine | $d$ (normalized) | None | Directional data, text |
| Sigmoid | Unclear | $\gamma$, $c$ | Neural network analogy (rarely used) |
The bandwidth parameter $\sigma$ (or equivalently $\gamma = 1/(2\sigma^2)$) in the RBF kernel is arguably the most important hyperparameter in Kernel PCA. Getting it wrong can completely destroy the algorithm's effectiveness.
What Bandwidth Controls
The bandwidth determines the "scale of locality" in the kernel:
Small $\sigma$ (large $\gamma$): Only very nearby points have high kernel similarity. The feature space becomes extremely localized. Each point is almost orthogonal to distant points.
Large $\sigma$ (small $\gamma$): Even distant points have significant kernel similarity. The kernel approaches a constant, and the feature space approaches the linear case.
Failure Modes
1. Bandwidth Too Small ($\gamma$ too large)
2. Bandwidth Too Large ($\gamma$ too small)
There's a "Goldilocks zone" for bandwidth where KPCA works well—large enough to connect related points, small enough to distinguish unrelated ones. Finding this zone is essential but non-trivial, and depends on the data's scale and structure.
Heuristic Methods for Initial $\sigma$
1. Median Heuristic
Set $\sigma$ to the median pairwise distance: $$\sigma = \text{median}_{i < j} |\mathbf{x}_i - \mathbf{x}_j|$$
This ensures that the "typical" pairwise kernel value is $e^{-0.5} \approx 0.61$—neither too close to 0 nor 1.
2. Percentile-Based
Use a percentile of pairwise distances (e.g., 10th-90th percentile range) depending on expected locality.
3. Mean Distance
Set $\sigma$ proportional to mean distance: $$\sigma = c \cdot \frac{1}{n(n-1)}\sum_{i \neq j} |\mathbf{x}_i - \mathbf{x}_j|$$
with $c \in [0.5, 2]$ as a tuning parameter.
4. Silverman's Rule (adapted from KDE)
For 1D data (or feature-by-feature): $$\sigma \approx 1.06 \cdot s \cdot n^{-1/5}$$
where $s$ is the standard deviation. Less applicable for KPCA but provides intuition.
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
import numpy as npfrom scipy.spatial.distance import pdist def bandwidth_heuristics(X: np.ndarray) -> dict: """ Compute various bandwidth heuristics for RBF kernel. Parameters: X: Data matrix of shape (n_samples, n_features) Returns: Dictionary of bandwidth estimates (sigma values) """ # Compute pairwise distances distances = pdist(X, metric='euclidean') heuristics = {} # Median heuristic (most commonly recommended) heuristics['median'] = np.median(distances) # Percentile-based heuristics['p10'] = np.percentile(distances, 10) heuristics['p25'] = np.percentile(distances, 25) heuristics['p75'] = np.percentile(distances, 75) heuristics['p90'] = np.percentile(distances, 90) # Mean distance heuristics['mean'] = np.mean(distances) # Standard deviation of distances heuristics['std'] = np.std(distances) # Convert to gamma (gamma = 1 / (2 * sigma^2)) gammas = {k: 1 / (2 * v**2) if v > 0 else np.inf for k, v in heuristics.items()} return heuristics, gammas def diagnose_bandwidth(sigma: float, X: np.ndarray) -> dict: """ Diagnose whether a bandwidth is appropriate for the data. Returns diagnostic metrics. """ n = X.shape[0] gamma = 1 / (2 * sigma**2) # Compute kernel matrix sq_dist = np.sum((X[:, None, :] - X[None, :, :])**2, axis=2) K = np.exp(-gamma * sq_dist) diagnostics = {} # Off-diagonal statistics (exclude self-similarities) off_diag = K[np.triu_indices(n, k=1)] diagnostics['mean_kernel'] = off_diag.mean() diagnostics['min_kernel'] = off_diag.min() diagnostics['max_kernel'] = off_diag.max() diagnostics['std_kernel'] = off_diag.std() # Check for degenerate cases diagnostics['near_identity'] = diagnostics['mean_kernel'] < 0.1 diagnostics['near_constant'] = diagnostics['std_kernel'] < 0.05 # Effective rank (based on eigenvalue decay) K_centered = K - K.mean(axis=1, keepdims=True) - K.mean(axis=0, keepdims=True) + K.mean() eigenvalues = np.linalg.eigvalsh(K_centered) eigenvalues = eigenvalues[eigenvalues > 1e-10] eigenvalues = eigenvalues / eigenvalues.sum() # Normalize entropy = -np.sum(eigenvalues * np.log(eigenvalues + 1e-10)) diagnostics['effective_rank'] = np.exp(entropy) return diagnostics # Example: compare bandwidth choicesnp.random.seed(42)n = 200X = np.random.randn(n, 10) sigmas, gammas = bandwidth_heuristics(X)print("Bandwidth Heuristics (sigma values):")for name, sigma in sigmas.items(): print(f" {name}: {sigma:.4f}") print("Diagnostics for different bandwidths:")for name in ['p10', 'median', 'p90']: sigma = sigmas[name] diag = diagnose_bandwidth(sigma, X) status = "✓ Good" if not (diag['near_identity'] or diag['near_constant']) else "✗ Bad" print(f" σ = {sigma:.4f} ({name}):") print(f" Mean kernel: {diag['mean_kernel']:.3f}, Eff. rank: {diag['effective_rank']:.1f} {status}")Heuristics provide starting points, but systematic parameter selection requires objective criteria and validation.
The Challenge: No Labels
Unlike supervised learning, KPCA is unsupervised—there are no labels to evaluate predictions against. This makes cross-validation less straightforward. We need proxy objectives that correlate with good dimensionality reduction.
Approach 1: Reconstruction Error
Measure how well the low-dimensional representation reconstructs the original data. For KPCA, this requires pre-image estimation:
Problem: Pre-image estimation is itself imperfect, confounding evaluation.
Approach 2: Supervised Proxy Task
If labels are available (even for a held-out validation set), use classification/regression accuracy on the reduced representation:
This directly optimizes for a practical goal but requires labels.
A fully unsupervised approach: select parameters that produce stable projections. If repeatedly subsampling data and computing KPCA gives highly variable results, the parameters may be poorly chosen. Stable parameters produce consistent low-dimensional representations.
Approach 3: Eigenvalue Spectrum Analysis
Examine the eigenvalue spectrum of the centered kernel matrix:
Quantify via:
Approach 4: Kernel Alignment
If a "target" kernel is available (e.g., based on known labels or domain knowledge), measure alignment between candidate kernel and target:
$$A(K_1, K_2) = \frac{\langle K_1, K_2 \rangle_F}{|K_1|_F |K_2|_F}$$
where $\langle \cdot, \cdot \rangle_F$ is the Frobenius inner product.
Grid Search with Validation
For systematic selection:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
import numpy as npfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.model_selection import cross_val_score def evaluate_kpca_downstream( X: np.ndarray, y: np.ndarray, gamma_values: list, n_components: int = 10, cv: int = 5) -> dict: """ Evaluate KPCA parameters using downstream classification accuracy. Parameters: X: Data matrix (n, d) y: Labels (n,) gamma_values: List of gamma values to evaluate n_components: Number of KPCA components cv: Number of cross-validation folds Returns: Dictionary of gamma -> mean CV accuracy """ results = {} for gamma in gamma_values: # Compute kernel matrix sq_dist = np.sum((X[:, None, :] - X[None, :, :])**2, axis=2) K = np.exp(-gamma * sq_dist) # Center kernel row_means = K.mean(axis=1, keepdims=True) col_means = K.mean(axis=0, keepdims=True) grand_mean = K.mean() K_centered = K - row_means - col_means + grand_mean # Eigendecomposition eigenvalues, eigenvectors = np.linalg.eigh(K_centered) idx = np.argsort(eigenvalues)[::-1] eigenvalues = eigenvalues[idx][:n_components] eigenvectors = eigenvectors[:, idx][:, :n_components] # Handle zero/negative eigenvalues valid = eigenvalues > 1e-10 if valid.sum() == 0: results[gamma] = {'accuracy': 0.0, 'variance_explained': 0.0} continue eigenvalues_valid = eigenvalues[valid] eigenvectors_valid = eigenvectors[:, valid] # Project data alphas = eigenvectors_valid / np.sqrt(eigenvalues_valid) Z = K_centered @ alphas # Evaluate with k-NN classifier clf = KNeighborsClassifier(n_neighbors=5) scores = cross_val_score(clf, Z, y, cv=cv, scoring='accuracy') # Variance explained by kept components total_var = np.abs(np.linalg.eigvalsh(K_centered)).sum() var_explained = eigenvalues_valid.sum() / total_var if total_var > 0 else 0 results[gamma] = { 'accuracy': scores.mean(), 'accuracy_std': scores.std(), 'variance_explained': var_explained, 'effective_components': valid.sum() } return results def evaluate_eigenspectrum(X: np.ndarray, gamma_values: list) -> dict: """ Evaluate kernel parameters using eigenvalue spectrum analysis. Returns metrics for each gamma value. """ results = {} for gamma in gamma_values: # Compute and center kernel sq_dist = np.sum((X[:, None, :] - X[None, :, :])**2, axis=2) K = np.exp(-gamma * sq_dist) K_centered = K - K.mean(axis=1, keepdims=True) - K.mean(axis=0, keepdims=True) + K.mean() # Eigenvalues eigenvalues = np.linalg.eigvalsh(K_centered) eigenvalues = np.sort(eigenvalues)[::-1] # Descending # Total variance pos_eigenvalues = eigenvalues[eigenvalues > 1e-10] total_var = pos_eigenvalues.sum() if total_var > 0: # Normalized eigenvalues normalized = pos_eigenvalues / total_var # Effective rank (exponential of entropy) entropy = -np.sum(normalized * np.log(normalized + 1e-10)) eff_rank = np.exp(entropy) # Variance explained by top k cumsum = np.cumsum(pos_eigenvalues) / total_var var_90 = np.searchsorted(cumsum, 0.9) + 1 # Components for 90% variance # Spectral gap (ratio of 1st to 2nd eigenvalue) if len(pos_eigenvalues) > 1: spectral_gap = pos_eigenvalues[0] / pos_eigenvalues[1] else: spectral_gap = np.inf else: eff_rank = 0 var_90 = X.shape[0] spectral_gap = 0 results[gamma] = { 'effective_rank': eff_rank, 'components_for_90': var_90, 'spectral_gap': spectral_gap, 'total_variance': total_var } return results # Example: find optimal gammanp.random.seed(42)from sklearn.datasets import make_circles X, y = make_circles(n_samples=200, noise=0.05, factor=0.3) gamma_grid = [0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 50.0] print("Downstream Accuracy Evaluation:")acc_results = evaluate_kpca_downstream(X, y, gamma_grid, n_components=5)for gamma, metrics in sorted(acc_results.items()): print(f" γ = {gamma:5.2f}: Acc = {metrics['accuracy']:.3f} ± {metrics['accuracy_std']:.3f}, " f"VarExp = {metrics['variance_explained']:.2%}") print("Eigenspectrum Analysis:")spec_results = evaluate_eigenspectrum(X, gamma_grid)for gamma, metrics in sorted(spec_results.items()): print(f" γ = {gamma:5.2f}: EffRank = {metrics['effective_rank']:5.1f}, " f"Comp@90% = {metrics['components_for_90']}")When no single kernel is clearly appropriate, or when different aspects of the data suggest different kernels, multi-kernel methods offer a principled solution.
Multiple Kernel Learning (MKL)
Instead of selecting a single kernel, combine multiple kernels: $$k_{\text{combined}}(\mathbf{x}, \mathbf{y}) = \sum_{m=1}^{M} \mu_m k_m(\mathbf{x}, \mathbf{y})$$
where ${k_m}$ are base kernels and ${\mu_m \geq 0}$ are combination weights (often constrained to sum to 1).
This is a valid kernel as long as base kernels are valid (kernels are closed under non-negative linear combination).
Approaches to Learning Weights
Benefits of Multi-Kernel Approaches
A powerful pattern: apply different kernels to different feature subsets. For example, RBF on continuous features, cosine on text features, polynomial on interaction features. Combine these for a comprehensive data representation.
Kernel Combinations
Beyond weighted sums, other valid combination operations:
Product Kernel: $$k(\mathbf{x}, \mathbf{y}) = k_1(\mathbf{x}, \mathbf{y}) \cdot k_2(\mathbf{x}, \mathbf{y})$$
Captures features that are high in both kernels.
Polynomial Kernel on Kernels: $$k(\mathbf{x}, \mathbf{y}) = (k_1(\mathbf{x}, \mathbf{y}) + c)^d$$
Applies polynomial transformation to kernel similarities.
Kernel on Subsets: $$k(\mathbf{x}, \mathbf{y}) = k_1(\mathbf{x}{[1:d_1]}, \mathbf{y}{[1:d_1]}) + k_2(\mathbf{x}{[d_1:d]}, \mathbf{y}{[d_1:d]})$$
Applies different kernels to disjoint feature subsets.
Bandwidth Mixture
Combine RBF kernels at multiple scales: $$k(\mathbf{x}, \mathbf{y}) = \sum_i \mu_i \exp(-\gamma_i |\mathbf{x} - \mathbf{y}|^2)$$
This captures both local and global structure simultaneously.
Kernel PCA with Combined Kernels
The combined kernel matrix is simply: $$\mathbf{K}_{\text{combined}} = \sum_m \mu_m \mathbf{K}_m$$
KPCA proceeds identically using this combined matrix.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
import numpy as npfrom itertools import product def combine_kernels(kernel_matrices: list, weights: np.ndarray = None) -> np.ndarray: """ Combine multiple kernel matrices with given weights. Parameters: kernel_matrices: List of (n, n) kernel matrices weights: Combination weights (default: uniform) Returns: Combined kernel matrix """ M = len(kernel_matrices) if weights is None: weights = np.ones(M) / M assert len(weights) == M assert np.all(weights >= 0) K_combined = sum(w * K for w, K in zip(weights, kernel_matrices)) return K_combined def multi_scale_rbf_kernel(X: np.ndarray, gamma_values: list) -> np.ndarray: """ Combine RBF kernels at multiple scales with uniform weights. """ sq_dist = np.sum((X[:, None, :] - X[None, :, :])**2, axis=2) kernels = [] for gamma in gamma_values: K = np.exp(-gamma * sq_dist) kernels.append(K) return combine_kernels(kernels) def grid_search_kernel_weights( kernel_matrices: list, X: np.ndarray, y: np.ndarray = None, n_grid: int = 5) -> tuple: """ Grid search over kernel combination weights. If y is provided, optimizes classification accuracy. Otherwise, optimizes for eigenvalue spread (unsupervised). """ M = len(kernel_matrices) # Generate weight combinations on simplex if M == 2: weight_candidates = [[w, 1-w] for w in np.linspace(0, 1, n_grid)] else: # For M > 2, sample uniformly on simplex weight_candidates = [] for _ in range(n_grid ** (M-1)): w = np.random.dirichlet(np.ones(M)) weight_candidates.append(w.tolist()) best_score = -np.inf best_weights = None for weights in weight_candidates: K_combined = combine_kernels(kernel_matrices, np.array(weights)) # Center K_cent = K_combined - K_combined.mean(axis=1, keepdims=True) - K_combined.mean(axis=0, keepdims=True) + K_combined.mean() if y is not None: # Supervised: use classification accuracy eigenvalues, eigenvectors = np.linalg.eigh(K_cent) idx = np.argsort(eigenvalues)[::-1] eigenvalues = eigenvalues[idx][:10] eigenvectors = eigenvectors[:, idx][:, :10] valid = eigenvalues > 1e-10 if valid.sum() < 2: continue alphas = eigenvectors[:, valid] / np.sqrt(eigenvalues[valid]) Z = K_cent @ alphas from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import cross_val_score clf = KNeighborsClassifier(n_neighbors=5) scores = cross_val_score(clf, Z, y, cv=3) score = scores.mean() else: # Unsupervised: use effective rank (prefer diverse eigenvalues) eigenvalues = np.linalg.eigvalsh(K_cent) pos_eig = eigenvalues[eigenvalues > 1e-10] if len(pos_eig) == 0: continue normalized = pos_eig / pos_eig.sum() entropy = -np.sum(normalized * np.log(normalized + 1e-10)) score = np.exp(entropy) # Effective rank if score > best_score: best_score = score best_weights = weights return np.array(best_weights), best_score # Example: multi-scale RBFnp.random.seed(42)from sklearn.datasets import make_moons X, y = make_moons(n_samples=200, noise=0.1) # Single kernelsgamma_values = [0.1, 1.0, 10.0]kernels = []for gamma in gamma_values: sq_dist = np.sum((X[:, None, :] - X[None, :, :])**2, axis=2) K = np.exp(-gamma * sq_dist) kernels.append(K) # Find optimal weightsweights, score = grid_search_kernel_weights(kernels, X, y)print(f"Optimal weights for γ = {gamma_values}: {weights.round(3)}")print(f"CV Accuracy: {score:.3f}") # Compare with individual kernelsfor i, gamma in enumerate(gamma_values): K_cent = kernels[i] - kernels[i].mean(axis=1, keepdims=True) - kernels[i].mean(axis=0, keepdims=True) + kernels[i].mean() eig = np.linalg.eigvalsh(K_cent) eig = np.sort(eig)[::-1][:10] alphas = np.linalg.eigh(K_cent)[1][:, -10:][:, ::-1] valid = eig > 1e-10 Z = K_cent @ (alphas[:, valid] / np.sqrt(eig[valid])) from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import cross_val_score scores = cross_val_score(KNeighborsClassifier(5), Z, y, cv=3) print(f"Single kernel γ = {gamma}: Accuracy = {scores.mean():.3f}")Drawing together the concepts from this page, here's a practical strategy for kernel selection in KPCA applications.
Step 1: Understand Your Data and Goal
Before touching kernels, clarify:
Step 2: Start Simple
Begin with:
Visualize projections, check eigenvalue spectra. This gives intuition before systematic search.
Step 3: Parameter Sweep for Primary Kernel
For the most promising kernel family:
In practice, the RBF kernel with carefully tuned bandwidth works well for 80% of problems. Invest time tuning the bandwidth rather than exploring exotic kernels. Only move to specialized kernels if you have domain reasons or the RBF clearly fails.
Step 4: Validate and Diagnose
For the selected kernel/parameters:
Step 5: Consider Combinations
If single kernels are inadequate:
Common Pitfalls to Avoid
This completes our deep dive into Kernel PCA. Let's consolidate what we've learned across the entire module.
When to Use Kernel PCA
✓ Data has nonlinear structure that linear PCA misses ✓ You need a principled, well-understood method ✓ Moderate sample sizes (n < 10,000 typically) ✓ Downstream task benefits from nonlinear features
When Not to Use Kernel PCA
✗ Linear relationships suffice (use standard PCA) ✗ Very large datasets without approximations ✗ Need interpretable components (feature-space directions are abstract) ✗ Generative applications (KPCA is discriminative/descriptive)
You now possess a comprehensive understanding of Kernel PCA—from the mathematical foundations of the kernel trick and dual formulation, through the practical details of centering and pre-image estimation, to the critical considerations of kernel selection. This knowledge equips you to apply KPCA effectively and to understand its place in the broader landscape of dimensionality reduction techniques.
| Method | Type | Strengths | Compared to KPCA |
|---|---|---|---|
| PCA | Linear, global | Simple, fast, interpretable | KPCA is nonlinear extension |
| Isomap | Nonlinear, geodesic | Preserves manifold distances | Better for manifold unfolding |
| LLE | Nonlinear, local | Preserves local neighborhoods | Better for local structure |
| t-SNE | Nonlinear, probabilistic | Excellent visualization | Better for visualization only |
| UMAP | Nonlinear, topological | Fast, preserves structure | Often preferred for large data |
| Autoencoders | Neural, learned | Flexible, scalable | Better for very large data |
Continuing Your Learning
Kernel PCA is part of a rich ecosystem of kernel methods and dimensionality reduction techniques. Consider exploring:
Each has its niche; understanding the full landscape helps you choose the right tool for each problem.