Loading content...
Every CAS-based algorithm—from simple counters to sophisticated lock-free data structures—relies on a common programming pattern: the CAS loop. This deceptively simple construct (read, compute, CAS, retry) is the fundamental idiom of atomic programming.
Getting CAS loops right requires understanding subtle issues: When should you retry? How do you avoid livelock? What memory ordering is sufficient? How do you handle spurious failures? What optimizations are safe?
This page provides a comprehensive treatment of CAS loop patterns, best practices, common pitfalls, and optimizations. Mastering these patterns is essential for writing correct and efficient concurrent code.
By the end of this page, you will understand the canonical CAS loop pattern, when to use weak vs strong CAS, how to handle contention with backoff strategies, common bugs in CAS loops and how to avoid them, and optimization techniques for high-performance CAS code. You will be equipped to write correct CAS-based algorithms confidently.
The basic CAS loop follows a simple template that applies universally across all CAS-based algorithms:
do {
old_value = read(location);
new_value = compute(old_value);
} while (!CAS(location, old_value, new_value));
Let's break down each step:
This pattern implements optimistic concurrency control: we optimistically compute the new state as if no one else will interfere, then verify at commit time (CAS) that our assumption was correct.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
#include <atomic> std::atomic<int> counter{0}; // Pattern 1: Simple update (increment by delta)void add_to_counter(int delta) { int old_value = counter.load(std::memory_order_relaxed); // When using compare_exchange_weak: // - 'old_value' is updated to actual value on failure // - This means we don't need to call load() again! while (!counter.compare_exchange_weak( old_value, // Expected (updated on failure) old_value + delta, // Desired std::memory_order_release, // Success ordering std::memory_order_relaxed // Failure ordering )) { // On failure, old_value now contains current value // Loop naturally retries with correct expected value }} // Pattern 2: Conditional update (only if condition met)bool increment_if_below_max(int max_value) { int old_value = counter.load(std::memory_order_relaxed); while (old_value < max_value) { // Check condition int new_value = old_value + 1; if (counter.compare_exchange_weak( old_value, new_value, std::memory_order_release, std::memory_order_relaxed )) { return true; // Successfully incremented } // old_value updated to current; loop rechecks condition } return false; // max_value reached} // Pattern 3: State transition (from specific state to another)enum State { IDLE, RUNNING, STOPPED };std::atomic<State> state{IDLE}; bool try_start() { State expected = IDLE; // Only start from IDLE // Here we use compare_exchange_strong because: // - We only want ONE attempt from this specific state // - If we're not IDLE, we don't want to retry (return false) return state.compare_exchange_strong( expected, RUNNING, std::memory_order_acq_rel );}A crucial aspect of the CAS loop is that compare_exchange updates the expected value on failure. This is not just a convenience—it's essential for correct loop operation.
int expected = current_value;
if (!counter.compare_exchange_weak(expected, new_value)) {
// 'expected' now contains the ACTUAL value found
// We can use it directly without another load()
}
This behavior allows the loop to:
There are two common structures for CAS loops, both equivalent:
Do-while style (try at least once):
do {
expected = location.load();
desired = compute(expected);
} while (!location.compare_exchange_weak(expected, desired));
While style (check exit condition first):
int expected = location.load();
while (!location.compare_exchange_weak(expected, compute(expected)));
The second style leverages the expected-value-update behavior more directly.
Never reload the value inside a CAS loop if you're using compare_exchange_weak/strong. These functions update the expected parameter on failure, giving you the current value automatically. An extra load() is not only unnecessary but may introduce a subtle bug (the value could change between your load and the next CAS).
C++ and other languages offer two variants of CAS: compare_exchange_strong and compare_exchange_weak. Understanding the distinction is crucial for writing correct and efficient code.
Guarantees that CAS fails only if the value didn't match:
*addr != expectedMay fail spuriously even if the value matched:
*addr != expected, OR due to spurious failure| Use Case | Recommended | Reason |
|---|---|---|
| CAS in a retry loop | compare_exchange_weak | You're retrying anyway; spurious fail just causes another harmless iteration |
| Single CAS attempt | compare_exchange_strong | You need to know if it actually failed due to value mismatch |
| Conditional update (exit loop on condition) | Either | Depends on whether spurious failure affects correctness |
| State transition with side effects | compare_exchange_strong | Can't risk spurious failure if success has side effects |
| Hot loop, ARM/RISC-V platform | compare_exchange_weak | Avoids extra overhead of strong CAS implementation on LL/SC |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
#include <atomic> std::atomic<int> counter{0};std::atomic<bool> flag{false}; // ═══════════════════════════════════════════════════════════════// GOOD: Use 'weak' in a retry loop// ═══════════════════════════════════════════════════════════════void increment_counter() { int expected = counter.load(); // Weak is fine here - we're in a loop that retries anyway while (!counter.compare_exchange_weak(expected, expected + 1)) { // Spurious failure? Just retry. Same cost. }} // ═══════════════════════════════════════════════════════════════// GOOD: Use 'strong' for single attempt / state transition// ═══════════════════════════════════════════════════════════════bool try_set_flag() { bool expected = false; // Strong because: if it fails, we want to know it REALLY failed // (i.e., flag was already set by someone else) return flag.compare_exchange_strong(expected, true);} // ═══════════════════════════════════════════════════════════════// CAREFUL: Conditional loop with side effects// ═══════════════════════════════════════════════════════════════std::atomic<int*> global_ptr{nullptr}; bool try_install_pointer(int* new_ptr) { int* expected = nullptr; // Using 'weak' here is RISKY if there are side effects // Suppose: if we fail, we free new_ptr // WRONG with weak: // if (!global_ptr.compare_exchange_weak(expected, new_ptr)) { // free(new_ptr); // BUG: might free even though install succeeded! // return false; // } // CORRECT: use strong when failure semantics matter if (!global_ptr.compare_exchange_strong(expected, new_ptr)) { free(new_ptr); // Really failed - safe to free return false; } return true;} // ═══════════════════════════════════════════════════════════════// ALSO OK: weak in conditional loop if failure is re-checked// ═══════════════════════════════════════════════════════════════bool increment_if_positive() { int expected = counter.load(); while (expected > 0) { // Re-check condition on each iteration // Weak is OK: spurious failure -> rechecks condition with new value if (counter.compare_exchange_weak(expected, expected + 1)) { return true; } // expected updated to current value; loop condition revalidates } return false; // counter is non-positive}On x86, there's no difference between weak and strong CAS in generated code—both map to LOCK CMPXCHG, which never fails spuriously. The distinction matters on ARM and similar LL/SC architectures, where weak CAS compiles to a simpler instruction sequence without retry logic. Writing portable code means using weak in loops (for ARM efficiency) and strong for single attempts (for correctness guarantees).
Under high contention, CAS loops can exhibit pathological behavior: many threads competing for the same CAS, most failing, all retrying immediately, creating a storm of cache coherence traffic. Effective contention management is essential for scalable performance.
When multiple threads fail CAS simultaneously and retry immediately:
This is similar to the thundering herd problem in lock acquisition. The solution is also similar: backoff.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
#include <atomic>#include <chrono>#include <thread>#include <random> std::atomic<int> counter{0}; // ═══════════════════════════════════════════════════════════════// Strategy 1: Exponential Backoff// ═══════════════════════════════════════════════════════════════void increment_with_exponential_backoff() { constexpr int MIN_BACKOFF = 1; constexpr int MAX_BACKOFF = 1024; int backoff = MIN_BACKOFF; int expected = counter.load(std::memory_order_relaxed); while (!counter.compare_exchange_weak( expected, expected + 1, std::memory_order_release, std::memory_order_relaxed )) { // Backoff: spin for 'backoff' iterations for (int i = 0; i < backoff; ++i) { __builtin_ia32_pause(); // x86 PAUSE to reduce power & pipeline stalls } // Exponential increase with jitter backoff = std::min(backoff * 2, MAX_BACKOFF); }} // ═══════════════════════════════════════════════════════════════// Strategy 2: Randomized Backoff// ═══════════════════════════════════════════════════════════════thread_local std::mt19937 rng(std::random_device{}()); void increment_with_random_backoff() { constexpr int MAX_BACKOFF = 512; int backoff = 16; int expected = counter.load(std::memory_order_relaxed); while (!counter.compare_exchange_weak( expected, expected + 1, std::memory_order_release, std::memory_order_relaxed )) { // Random delay to desynchronize retry attempts std::uniform_int_distribution<int> dist(0, backoff - 1); int delay = dist(rng); for (int i = 0; i < delay; ++i) { __builtin_ia32_pause(); } // Increase range for next failure backoff = std::min(backoff * 2, MAX_BACKOFF); }} // ═══════════════════════════════════════════════════════════════// Strategy 3: Yielding Backoff (for long contention)// ═══════════════════════════════════════════════════════════════void increment_with_yield_backoff() { int spin_count = 0; constexpr int SPINS_BEFORE_YIELD = 100; int expected = counter.load(std::memory_order_relaxed); while (!counter.compare_exchange_weak( expected, expected + 1, std::memory_order_release, std::memory_order_relaxed )) { ++spin_count; if (spin_count < SPINS_BEFORE_YIELD) { // First few attempts: just pause __builtin_ia32_pause(); } else { // Many failures: yield CPU to other threads std::this_thread::yield(); spin_count = 0; // Reset counter after yield } }}Exponential backoff is the most common choice because:
Randomization is important to prevent synchronized retries:
Yielding is appropriate when:
In extremely hot paths (millions of CAS per second), even minimal backoff overhead can be significant. Some designs accept no backoff, relying on the self-regulating nature of CAS contention. However, this can lead to livelock-like behavior under extreme contention.
Backoff parameters (min, max, growth rate) significantly affect performance. Too aggressive backoff wastes time in low contention; too conservative backoff wastes CPU and bus bandwidth in high contention. Optimal values depend on workload, hardware, and core count. Production systems often auto-tune backoff parameters based on observed failure rates.
CAS loops are deceptively simple, and subtle bugs are common. Here are the most frequent mistakes and how to avoid them.
The most basic bug: not checking whether CAS succeeded.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
#include <atomic> std::atomic<int> counter{0};std::atomic<int*> ptr{nullptr}; // ═══════════════════════════════════════════════════════════════// BUG 1: Ignoring CAS result// ═══════════════════════════════════════════════════════════════void wrong_increment() { int old_val = counter.load(); int new_val = old_val + 1; // BUG: CAS might fail if another thread updated counter! counter.compare_exchange_strong(old_val, new_val); // We proceed as if it succeeded, but it might not have!} void correct_increment() { int old_val = counter.load(); while (!counter.compare_exchange_weak(old_val, old_val + 1)) { // Retry loop handles failures }} // ═══════════════════════════════════════════════════════════════// BUG 2: Reloading after CAS failure// ═══════════════════════════════════════════════════════════════void wrong_reload() { int old_val = counter.load(); while (!counter.compare_exchange_weak(old_val, old_val + 1)) { old_val = counter.load(); // BUG: Unnecessary reload! // compare_exchange already updated old_val on failure // This load might get a DIFFERENT value than what CAS saw }} void correct_no_reload() { int old_val = counter.load(); while (!counter.compare_exchange_weak(old_val, old_val + 1)) { // old_val was already updated to current value by failed CAS // No reload needed! }} // ═══════════════════════════════════════════════════════════════// BUG 3: Not updating expected in conditional loop// ═══════════════════════════════════════════════════════════════bool wrong_conditional() { int old_val = counter.load(); while (old_val < 100) { if (counter.compare_exchange_weak(old_val, old_val + 1)) { return true; } // BUG: If condition used 'old_val' but we reload separately: old_val = counter.load(); // Wait, this is what we checked above // Actually this is borderline - the real bug is when you DON'T // update old_val at all between loop iterations } return false;} // ═══════════════════════════════════════════════════════════════// BUG 4: Missing memory ordering// ═══════════════════════════════════════════════════════════════std::atomic<bool> ready{false};int data = 0; void wrong_ordering() { data = 42; // BUG: relaxed ordering doesn't guarantee 'data' write is visible // before 'ready' write is seen by other threads ready.store(true, std::memory_order_relaxed); // BUG!} void correct_ordering() { data = 42; // release ensures all prior writes (including 'data') are visible // to threads that see ready==true with acquire semantics ready.store(true, std::memory_order_release); // Correct!} // ═══════════════════════════════════════════════════════════════// BUG 5: Using local variable after CAS (stale reference)// ═══════════════════════════════════════════════════════════════struct Node { int value; Node* next; };std::atomic<Node*> head{nullptr}; void wrong_stale_reference() { Node* old_head = head.load(); if (old_head == nullptr) return; Node* new_head = old_head->next; if (head.compare_exchange_strong(old_head, new_head)) { int value = old_head->value; // BUG: old_head might be freed! // Another thread could have also popped and freed this node // Use-after-free hazard! }} // Solution: use hazard pointers, epoch-based reclamation, etc.| Bug | Symptom | Fix |
|---|---|---|
| Ignoring CAS result | Lost updates, inconsistent state | Always check return value; use retry loop |
| Unnecessary reload | Subtle race between load and CAS | Let CAS update expected value on failure |
| Wrong memory ordering | Data visible before flag, or vice versa | Use appropriate acquire/release ordering |
| Use-after-free | Crash, corruption | Use memory reclamation (hazard pointers, etc.) |
| ABA vulnerability | Corrupted data structures | Use tagged pointers or reclamation schemes |
| Infinite loop on failure | Hang under contention | Add backoff or yield |
CAS bugs often don't manifest in testing because they require specific timing conditions. A CAS loop that works 99.99% of the time can fail catastrophically under load, causing hard-to-reproduce production issues. Careful code review, formal reasoning, and tools like ThreadSanitizer are essential. Never assume correctness from passing tests alone.
Once a CAS loop is correct, several optimizations can improve performance. These range from simple tweaks to significant structural changes.
Before attempting CAS on a lock or guarded variable, check if it's even worth trying:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
#include <atomic> std::atomic<bool> lock{false};std::atomic<int> counter{0}; // ═══════════════════════════════════════════════════════════════// Optimization 1: Read before writing (TTAS pattern)// ═══════════════════════════════════════════════════════════════void acquire_lock_ttas() { while (true) { // READ first (cheap, can use shared cache line) while (lock.load(std::memory_order_relaxed)) { __builtin_ia32_pause(); } // Now try CAS (expensive, requires exclusive cache line) bool expected = false; if (lock.compare_exchange_weak( expected, true, std::memory_order_acquire, std::memory_order_relaxed )) { return; // Got it! } // Someone else grabbed it first, back to reading }} // ═══════════════════════════════════════════════════════════════// Optimization 2: Hoisting invariant checks out of loop// ═══════════════════════════════════════════════════════════════std::atomic<int> bounded_counter{0};constexpr int MAX_VALUE = 100; bool increment_bounded_optimized() { int expected = bounded_counter.load(std::memory_order_relaxed); // Check termination condition ONCE before potentially expensive loop if (expected >= MAX_VALUE) { return false; // Fast path: already at max } do { if (expected >= MAX_VALUE) { return false; // Rechecked condition after failure } } while (!bounded_counter.compare_exchange_weak( expected, expected + 1, std::memory_order_release, std::memory_order_relaxed )); return true;} // ═══════════════════════════════════════════════════════════════// Optimization 3: Batching operations to reduce contention// ═══════════════════════════════════════════════════════════════std::atomic<int> shared_counter{0};thread_local int local_count = 0; void increment_batched() { // Accumulate locally local_count++; // Flush to shared counter periodically if (local_count >= 100) { int old = shared_counter.load(std::memory_order_relaxed); while (!shared_counter.compare_exchange_weak( old, old + local_count, std::memory_order_release, std::memory_order_relaxed )) {} local_count = 0; }} int get_total() { // Note: reading from all thread-local counts would be needed // for exact count; shared_counter is approximate return shared_counter.load(std::memory_order_acquire);} // ═══════════════════════════════════════════════════════════════// Optimization 4: Using fetch_add when applicable// ═══════════════════════════════════════════════════════════════void increment_simple() { // For simple increment, fetch_add is more efficient than CAS loop // Hardware can optimize fetch_add better than repeated CAS counter.fetch_add(1, std::memory_order_relaxed);} // CAS loop only needed when:// - Update depends on current value in complex way// - Conditional update required// - Multiple fields must change atomically (via pointer swap)| Technique | Benefit | When to Use |
|---|---|---|
| Read-before-CAS (TTAS) | Reduces write traffic when contended | Lock acquisition, guarded variables |
| Hoist invariant checks | Avoids unnecessary CAS attempts | Conditional updates with fast-path exits |
| Batching | Dramatically reduces contention | Counters, statistics, non-critical aggregates |
| Use fetch_add/fetch_sub | More efficient than CAS for simple ops | Simple increments/decrements |
| Sharding | Spreads contention across multiple variables | High-contention counters, data structures |
| Weak CAS in loops | Avoids overhead of strong CAS on LL/SC | Any CAS retry loop |
For simple operations like increment/decrement, use specialized atomics (fetch_add, fetch_sub, fetch_or, etc.) instead of CAS loops. These map directly to hardware instructions (LOCK XADD on x86) and are more efficient than compare-and-swap. Reserve CAS loops for operations that truly require conditional updates based on current value.
While CAS typically operates on single machine words (32 or 64 bits), many algorithms require atomic updates of more complex data. Several techniques address this challenge.
The most elegant solution: use CAS on a pointer, with the pointed-to structure immutable after creation.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109
#include <atomic>#include <memory> // ═══════════════════════════════════════════════════════════════// Approach 1: CAS on pointer to immutable structure// ═══════════════════════════════════════════════════════════════struct Config { int timeout; int max_retries; std::string endpoint; // Config is immutable after construction // (no setters, all members const or effectively so)}; std::atomic<Config*> current_config{nullptr}; void update_config(int new_timeout) { Config* old_config = current_config.load(std::memory_order_acquire); while (true) { // Create new immutable config Config* new_config = new Config{ new_timeout, old_config ? old_config->max_retries : 3, old_config ? old_config->endpoint : "default" }; // CAS the pointer if (current_config.compare_exchange_weak( old_config, new_config, std::memory_order_release, std::memory_order_acquire )) { // Success! Old config must be reclaimed safely // (using hazard pointers, RCU, etc.) schedule_reclamation(old_config); return; } // Failed - old_config now points to current config delete new_config; // Discard our attempt // Loop retries with new old_config value }} // Readers get consistent snapshot automaticallyConfig* get_config() { return current_config.load(std::memory_order_acquire);} // ═══════════════════════════════════════════════════════════════// Approach 2: Pack multiple values into one word// ═══════════════════════════════════════════════════════════════struct PackedState { uint32_t counter : 16; // 16 bits uint32_t flags : 8; // 8 bits uint32_t version : 8; // 8 bits (for ABA prevention)}; static_assert(sizeof(PackedState) == sizeof(uint32_t)); std::atomic<uint32_t> packed_state{0}; void increment_with_flags(uint8_t new_flags) { PackedState old_state, new_state; // Load as integer, interpret as packed struct uint32_t old_val = packed_state.load(std::memory_order_relaxed); do { old_state = *reinterpret_cast<PackedState*>(&old_val); new_state.counter = old_state.counter + 1; new_state.flags = new_flags; new_state.version = old_state.version + 1; uint32_t new_val = *reinterpret_cast<uint32_t*>(&new_state); if (packed_state.compare_exchange_weak( old_val, new_val, std::memory_order_acq_rel )) { return; } // old_val updated to current value } while (true);} // ═══════════════════════════════════════════════════════════════// Approach 3: Double-width CAS (DCAS / CMPXCHG16B)// ═══════════════════════════════════════════════════════════════struct alignas(16) DoubleWord { void* ptr; uint64_t tag;}; std::atomic<DoubleWord> tagged_ptr; bool cas_tagged_ptr(void* expected_ptr, uint64_t expected_tag, void* new_ptr, uint64_t new_tag) { DoubleWord expected{expected_ptr, expected_tag}; DoubleWord desired{new_ptr, new_tag}; return tagged_ptr.compare_exchange_strong(expected, desired);} // Note: Requires 16-byte aligned storage and CMPXCHG16B support// C++ std::atomic<DoubleWord> should handle this on x86-64| Technique | Data Size | Complexity | Best For |
|---|---|---|---|
| Pointer to immutable | Unlimited | Medium (needs reclamation) | Complex structures, COW updates |
| Packed bit fields | 1 word (64 bits) | Low | Small, related values |
| Double-width CAS | 2 words (128 bits) | Medium | Pointer + tag for ABA prevention |
| Split into parts | Varies | High | Multi-step protocols |
Support for double-width CAS varies: x86-64 provides CMPXCHG16B but requires 16-byte alignment; ARM and other platforms may not have native double-width CAS. C++ std::atomic for types larger than a word may fall back to locks internally. Always verify that your atomic operations are truly lock-free using std::atomic<T>::is_lock_free() if this matters for your application.
CAS-based code is notoriously difficult to test and debug because bugs may only manifest under specific timing conditions. Several tools and techniques help address this challenge.
ThreadSanitizer detects data races at runtime by tracking memory accesses and synchronization operations.
# Compile with ThreadSanitizer
g++ -fsanitize=thread -g mycode.cpp -o mycode
# Run - TSan reports races
./mycode
TSan catches:
Model checkers (like CDSChecker, GenMC, or CHESS) systematically explore all possible thread interleavings, finding bugs that random testing would miss.
// CDSChecker example - finds all interleavings
#include "cds_model.h"
void thread1() { counter.fetch_add(1); }
void thread2() { counter.fetch_add(1); }
int main() {
thrd_create(&t1, thread1, NULL);
thrd_create(&t2, thread2, NULL);
thrd_join(t1); thrd_join(t2);
assert(counter.load() == 2); // Checked for all interleavings
}
sleep() or yield() calls in debug builds to perturb timing.1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
#include <atomic>#include <cassert>#include <iostream> std::atomic<int> counter{0}; // ═══════════════════════════════════════════════════════════════// Defensive CAS loop with debugging support// ═══════════════════════════════════════════════════════════════void increment_defensive() { int attempts = 0; constexpr int MAX_ATTEMPTS = 1000000; int expected = counter.load(std::memory_order_relaxed); while (!counter.compare_exchange_weak( expected, expected + 1, std::memory_order_release, std::memory_order_relaxed )) { attempts++; // Detect potential livelock / extreme contention if (attempts > MAX_ATTEMPTS) { std::cerr << "WARNING: CAS loop exceeded " << MAX_ATTEMPTS << " attempts. Possible livelock." << std::endl; std::cerr << "Expected: " << expected << ", Current: " << counter.load() << std::endl; // In production: maybe switch to lock-based fallback assert(false && "CAS loop appears livelocked"); } // Logging for debug analysis #ifdef DEBUG_CAS if (attempts % 100 == 0) { std::cerr << "CAS retry #" << attempts << ", expected=" << expected << std::endl; } #endif } // Post-condition: counter increased by exactly 1 // (Hard to verify directly, but assertions on final state help)} // ═══════════════════════════════════════════════════════════════// Invariant checking wrapper// ═══════════════════════════════════════════════════════════════class AtomicBoundedCounter { std::atomic<int> value_{0}; int min_, max_; public: AtomicBoundedCounter(int min, int max) : min_(min), max_(max) {} bool increment() { int expected = value_.load(std::memory_order_relaxed); while (expected < max_) { if (value_.compare_exchange_weak( expected, expected + 1, std::memory_order_release, std::memory_order_relaxed )) { // Assert invariant after successful modification int new_val = value_.load(std::memory_order_acquire); assert(new_val >= min_ && new_val <= max_ && "Invariant violated!"); return true; } } return false; }};No amount of testing can guarantee that CAS-based code is correct. The number of possible interleavings grows exponentially with code size and thread count. Testing may pass for years before a specific interleaving triggers a bug. For critical code, combine testing with formal analysis, code review by concurrency experts, and use of well-tested libraries.
We have deeply explored CAS loops—the fundamental building block of all CAS-based algorithms. From the basic retry pattern to advanced optimizations and debugging techniques, these patterns are essential knowledge for concurrent programming.
The final page of this module examines CAS performance in depth. We'll analyze how CAS operations perform under various conditions, the impact of cache coherence, NUMA effects, and how to measure and optimize CAS-heavy code.
We will cover:
This performance perspective completes our understanding of CAS, enabling you to not only write correct CAS-based code but also reason about its efficiency.
You now understand CAS loops deeply—the patterns, the pitfalls, and the best practices. This knowledge is the key to writing correct CAS-based algorithms, whether you're implementing lock-free data structures, optimizing hot paths, or simply understanding the synchronization primitives you use every day.