Loading content...
In the landscape of time-series databases, two solutions dominate the production deployments of the world's most demanding organizations: InfluxDB and TimescaleDB. Netflix uses InfluxDB to monitor billions of metrics across its global streaming infrastructure. Cisco processes terabytes of network telemetry through TimescaleDB. Fortune 500 companies stake their operational visibility on these databases.
Yet these two databases embody fundamentally different philosophies. InfluxDB is a purpose-built time-series database—designed from scratch for metrics and events, with its own storage engine, query language, and operational model. TimescaleDB is a time-series extension for PostgreSQL—leveraging decades of relational database innovation while adding time-series superpowers.
Choosing between them isn't about which is "better"—it's about which philosophy aligns with your requirements, team capabilities, and architectural vision.
By the end of this page, you will deeply understand both InfluxDB and TimescaleDB—their internal architectures, data models, query capabilities, performance characteristics, and operational trade-offs. You'll be equipped to make an informed decision for production time-series workloads.
InfluxDB, developed by InfluxData, is the most widely deployed open-source time-series database. Its architecture has evolved through multiple generations (1.x, 2.x, and the latest 3.x/IOx), each addressing limitations of the previous. We'll focus on the production-stable 2.x architecture while noting 3.x improvements.
Core Architectural Components:
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
InfluxDB 2.x High-Level Architecture: ┌─────────────────────────────────────────────────────────────────────┐│ CLIENT LAYER ││ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────────────────┐ ││ │ Telegraf │ │ HTTP API │ │ CLI │ │ Client Libraries │ ││ │ (Agent) │ │ (Write) │ │ (influx) │ │ (Go, Python, JS...) │ ││ └──────────┘ └──────────┘ └──────────┘ └──────────────────────┘ │└─────────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────────┐│ API LAYER ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ HTTP API Server │ ││ │ ├── Write endpoint: /api/v2/write │ ││ │ ├── Query endpoint: /api/v2/query (Flux) │ ││ │ ├── Delete endpoint: /api/v2/delete │ ││ │ └── Management: organizations, buckets, tasks, etc. │ ││ └─────────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────────┐│ PROCESSING LAYER ││ ┌─────────────────────┐ ┌─────────────────────────────────────┐ ││ │ Flux Engine │ │ Task Engine │ ││ │ (Query) │ │ (Scheduled Jobs) │ ││ │ ├── Parser │ │ ├── Downsampling │ ││ │ ├── Planner │ │ ├── Alerting │ ││ │ └── Executor │ │ └── Continuous queries │ ││ └─────────────────────┘ └─────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────────┐│ STORAGE LAYER ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ TSM Engine (Time-Structured Merge Tree) │ ││ │ ├── In-Memory Cache (write buffer) │ ││ │ ├── WAL (Write-Ahead Log) │ ││ │ ├── TSM Files (compressed, sorted, immutable) │ ││ │ └── Series Index (inverted index for tag lookups) │ ││ └─────────────────────────────────────────────────────────────┘ ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ Shard Groups (time-based partitioning) │ ││ │ └── Shards (individual TSM storage units) │ ││ └─────────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────────┘The TSM Engine in Detail:
The Time-Structured Merge (TSM) engine is InfluxDB's secret weapon. It combines LSM-tree principles with time-series-specific optimizations:
Write Path: Data enters the in-memory cache, is simultaneously written to WAL for durability, and accumulates until the cache reaches a threshold (typically 25-50MB). Then it's sorted by series key and time, compressed, and flushed to a TSM file.
TSM File Format: Each TSM file contains multiple blocks, where each block holds data for a single series (measurement + tag set) within a time range. Timestamps and values are stored in separate, highly-compressed columns.
Compaction: Background compaction merges smaller TSM files into larger ones, removes deleted data, and optimizes for query performance. Level-based compaction ensures reads rarely need to scan many files.
Series Index: A separate inverted index maps tag values to series IDs, enabling efficient filtering. The index is also organized by time to support time-bounded tag lookups.
InfluxDB 1.x/2.x maintains a series index in memory, with each unique series (measurement + tag set combination) consuming ~1KB of RAM. At 10 million unique series, you need ~10GB of RAM just for the index. InfluxDB 3.x (IOx) addresses this with a columnar storage engine based on Apache Arrow, dramatically reducing memory overhead.
InfluxDB's data model is purpose-built for metrics and events, with concepts that differ significantly from relational databases:
Core Concepts:
123456789101112131415161718192021222324252627282930313233
Line Protocol Format:<measurement>,<tag_key>=<tag_value>,... <field_key>=<field_value>,... <timestamp> Examples: # CPU usage metriccpu,host=web01,region=us-east usage=67.5,idle=32.5 1704067200000000000 # HTTP request metricshttp_requests,method=GET,endpoint=/api/users count=1234,latency_ms=45.2 1704067200000000000 # Temperature sensorstemperature,sensor_id=A1,location=datacenter-1 celsius=23.4 1704067200000000000temperature,sensor_id=A2,location=datacenter-1 celsius=24.1 1704067200000000000temperature,sensor_id=B1,location=datacenter-2 celsius=22.8 1704067200000000000 Data Model Visualization:┌─────────────────────────────────────────────────────────────────────┐│ Bucket: metrics (retention: 30 days) │├─────────────────────────────────────────────────────────────────────┤│ Measurement: cpu ││ ├── Series: cpu,host=web01,region=us-east ││ │ └── Points: [(t1, usage=67.5), (t2, usage=68.2), ...] ││ ├── Series: cpu,host=web02,region=us-east ││ │ └── Points: [(t1, usage=42.1), (t2, usage=43.8), ...] ││ └── Series: cpu,host=db01,region=us-west ││ └── Points: [(t1, usage=89.2), (t2, usage=91.0), ...] │├─────────────────────────────────────────────────────────────────────┤│ Measurement: memory ││ ├── Series: memory,host=web01,region=us-east ││ │ └── Points: [(t1, used_gb=12.4), (t2, used_gb=12.5), ...] ││ └── ... │└─────────────────────────────────────────────────────────────────────┘The most important schema design decision in InfluxDB is choosing what becomes a tag vs. a field. Tags are indexed and should be used for dimensions you filter on (host, region, service). Fields are not indexed and should be used for actual measurements (CPU percentage, request count). Putting high-cardinality data (user IDs, request IDs) in tags causes cardinality explosion and memory exhaustion.
InfluxDB 2.x introduced Flux, a functional data scripting language designed specifically for time-series analytics. Flux represents a significant departure from SQL's declarative model, embracing a pipeline-based approach where data flows through a series of transformations.
Flux Philosophy:
Flux treats queries as data pipelines. Data enters at the source, flows through transformations, and exits at the sink. Each transformation receives a stream of tables, processes them, and outputs modified tables. This model naturally maps to time-series operations like windowing, aggregation, and alerting.
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
// Basic query: Get CPU usage from last hourfrom(bucket: "metrics") |> range(start: -1h) |> filter(fn: (r) => r._measurement == "cpu") |> filter(fn: (r) => r._field == "usage") |> filter(fn: (r) => r.host == "web01") // Aggregation: Average CPU per host over 5-minute windowsfrom(bucket: "metrics") |> range(start: -24h) |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage") |> aggregateWindow(every: 5m, fn: mean, createEmpty: false) |> group(columns: ["host"]) // Downsampling: Reduce resolution for historical datafrom(bucket: "metrics") |> range(start: -30d) |> filter(fn: (r) => r._measurement == "temperature") |> aggregateWindow(every: 1h, fn: mean) |> to(bucket: "metrics_downsampled") // Alerting: Detect high CPU and trigger notificationfrom(bucket: "metrics") |> range(start: -5m) |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage") |> aggregateWindow(every: 1m, fn: mean) |> filter(fn: (r) => r._value > 90.0) |> map(fn: (r) => ({ r with alert_message: "High CPU on ${r.host}: ${r._value}%" })) // Complex transformation: Calculate rate of changefrom(bucket: "metrics") |> range(start: -1h) |> filter(fn: (r) => r._measurement == "http_requests") |> derivative(unit: 1s, nonNegative: true) |> rename(columns: {_value: "requests_per_second"}) // Join: Correlate CPU with memory usagecpu = from(bucket: "metrics") |> range(start: -1h) |> filter(fn: (r) => r._measurement == "cpu" and r._field == "usage") memory = from(bucket: "metrics") |> range(start: -1h) |> filter(fn: (r) => r._measurement == "memory" and r._field == "used_percent") join(tables: {cpu: cpu, memory: memory}, on: ["_time", "host"]) |> map(fn: (r) => ({ _time: r._time, host: r.host, cpu_usage: r._value_cpu, memory_usage: r._value_memory }))Flux Strengths and Limitations:
TimescaleDB takes a radically different approach: it extends PostgreSQL with time-series capabilities rather than building a database from scratch. This means you get the full power of PostgreSQL—SQL, transactions, joins, extensions, tooling—combined with optimizations for time-series workloads.
Core Architectural Innovation: Hypertables
TimescaleDB's central abstraction is the hypertable—a virtual table that automatically partitions data into smaller PostgreSQL tables called chunks. Chunks are organized by time (and optionally by a space dimension like device_id).
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
TimescaleDB Architecture Overview: ┌─────────────────────────────────────────────────────────────────────┐│ APPLICATION LAYER ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ Standard PostgreSQL Clients │ ││ │ ├── psql, pgAdmin, DBeaver │ ││ │ ├── ORMs: SQLAlchemy, Prisma, TypeORM, Diesel │ ││ │ ├── BI Tools: Grafana, Tableau, Metabase │ ││ │ └── Any PostgreSQL driver (libpq, JDBC, etc.) │ ││ └─────────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────────┐│ TIMESCALEDB EXTENSION LAYER ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ Hypertable Abstraction │ ││ │ ├── Automatic chunk creation (time-based) │ ││ │ ├── Query planning & chunk exclusion │ ││ │ ├── Chunk compression (native columnar) │ ││ │ └── Data retention policies │ ││ └─────────────────────────────────────────────────────────────┘ ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ Continuous Aggregates │ ││ │ ├── Materialized views with incremental refresh │ ││ │ └── Automatic real-time aggregation │ ││ └─────────────────────────────────────────────────────────────┘ ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ Additional Features │ ││ │ ├── Compression policies (columnar + dictionary) │ ││ │ ├── Data tiering (move to S3/object storage) │ ││ │ ├── Job scheduling (retention, compression, etc.) │ ││ │ └── Hyperfunctions (time-series SQL functions) │ ││ └─────────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────────┘ │ ▼┌─────────────────────────────────────────────────────────────────────┐│ POSTGRESQL CORE ││ ┌─────────────────────────────────────────────────────────────┐ ││ │ Standard PostgreSQL Features │ ││ │ ├── MVCC (Multi-Version Concurrency Control) │ ││ │ ├── B-tree, BRIN, GIN, GiST indexes │ ││ │ ├── Full SQL support (CTEs, window functions, etc.) │ ││ │ ├── Transactions, foreign keys, constraints │ ││ │ ├── Extensions (PostGIS, pg_stat_statements, etc.) │ ││ │ └── Replication (streaming, logical) │ ││ └─────────────────────────────────────────────────────────────┘ │└─────────────────────────────────────────────────────────────────────┘ Hypertable Chunk Organization:┌─────────────────────────────────────────────────────────────────────┐│ Hypertable: sensor_readings ││ (User sees: single unified table) │└─────────────────────────────────────────────────────────────────────┘ │ ┌─────────────────┼─────────────────┐ ▼ ▼ ▼┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐│ Chunk: Jan 1-7 │ │ Chunk: Jan 8-14 │ │ Chunk: Jan 15-21││ (PostgreSQL tbl)│ │ (PostgreSQL tbl)│ │ (PostgreSQL tbl)││ ├── Uncompressd │ │ ├── Compressed │ │ ├── Compressed ││ └── ~10GB │ │ └── ~1GB │ │ └── ~1GB │└──────────────────┘ └──────────────────┘ └──────────────────┘Key Architectural Advantages:
Chunk Exclusion: When you query a time range, TimescaleDB's planner identifies which chunks overlap that range and completely skips others. A query for 'last 24 hours' on a year of data might scan 2 chunks instead of 52.
Native Compression: Older chunks can be compressed into a columnar format with delta encoding, dictionary compression, and Gorilla-style algorithms. Compression ratios of 10-20x are typical, matching purpose-built TSDBs.
PostgreSQL Compatibility: Because hypertables are regular PostgreSQL tables with metadata, all PostgreSQL features work: JOINs to relational tables, foreign keys, stored procedures, triggers, extensions like PostGIS for geospatial data, and standard replication.
No Schema Changes Required: You can add TimescaleDB to an existing PostgreSQL database and convert tables to hypertables with a single command. Migration is incremental.
TimescaleDB uses standard SQL, enhanced with hyperfunctions—specialized SQL functions for time-series operations. This approach offers a gentler learning curve for teams familiar with SQL while providing powerful time-series capabilities.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
-- Create a hypertable (converts regular table to time-series table)CREATE TABLE sensor_readings ( time TIMESTAMPTZ NOT NULL, sensor_id TEXT NOT NULL, temperature DOUBLE PRECISION, humidity DOUBLE PRECISION); SELECT create_hypertable('sensor_readings', 'time', chunk_time_interval => INTERVAL '1 day'); -- Basic query: Last hour of readingsSELECT time, sensor_id, temperatureFROM sensor_readingsWHERE time > NOW() - INTERVAL '1 hour' AND sensor_id = 'sensor-001'; -- Time bucketing: Average temperature per hourSELECT time_bucket('1 hour', time) AS bucket, sensor_id, AVG(temperature) AS avg_temp, MIN(temperature) AS min_temp, MAX(temperature) AS max_tempFROM sensor_readingsWHERE time > NOW() - INTERVAL '24 hours'GROUP BY bucket, sensor_idORDER BY bucket DESC; -- Continuous Aggregate: Pre-computed hourly summariesCREATE MATERIALIZED VIEW sensor_hourlyWITH (timescaledb.continuous) ASSELECT time_bucket('1 hour', time) AS bucket, sensor_id, AVG(temperature) AS avg_temp, COUNT(*) AS reading_countFROM sensor_readingsGROUP BY bucket, sensor_id; -- Refresh policy: Keep aggregate up to dateSELECT add_continuous_aggregate_policy('sensor_hourly', start_offset => INTERVAL '3 hours', end_offset => INTERVAL '1 hour', schedule_interval => INTERVAL '1 hour'); -- Hyperfunctions: Advanced time-series operations-- Interpolation: Fill gaps with linear interpolationSELECT time_bucket_gapfill('1 minute', time) AS bucket, sensor_id, interpolate(AVG(temperature)) AS temp_interpolatedFROM sensor_readingsWHERE time > NOW() - INTERVAL '1 hour'GROUP BY bucket, sensor_id; -- Last observation carried forward (LOCF)SELECT time_bucket_gapfill('1 minute', time) AS bucket, sensor_id, locf(AVG(temperature)) AS temp_locfFROM sensor_readingsWHERE time > NOW() - INTERVAL '1 hour'GROUP BY bucket, sensor_id; -- Percentile approximations (efficient for large datasets)SELECT time_bucket('1 hour', time) AS bucket, percentile_agg(temperature) AS temp_percentiles, approx_percentile(0.50, percentile_agg(temperature)) AS p50, approx_percentile(0.95, percentile_agg(temperature)) AS p95, approx_percentile(0.99, percentile_agg(temperature)) AS p99FROM sensor_readingsWHERE time > NOW() - INTERVAL '24 hours'GROUP BY bucket; -- Join with relational data (PostgreSQL power!)SELECT sr.time, sr.sensor_id, sr.temperature, s.location, s.manufacturerFROM sensor_readings srJOIN sensors s ON sr.sensor_id = s.idWHERE sr.time > NOW() - INTERVAL '1 hour' AND s.location = 'factory-floor';Continuous aggregates automatically maintain pre-computed summaries as data arrives. A query for 'average temperature per hour over the last year' that would scan billions of rows instead reads thousands of pre-computed rows. Combined with real-time aggregation of recent data, you get both speed and accuracy.
Understanding the trade-offs between InfluxDB and TimescaleDB requires examining them across multiple dimensions. Neither is universally better—the right choice depends on your specific requirements.
| Dimension | InfluxDB | TimescaleDB |
|---|---|---|
| Query Language | Flux (functional, purpose-built) | SQL (standard, familiar) |
| Storage Engine | TSM (purpose-built for TSDB) | PostgreSQL + columnar compression |
| Compression | Gorilla, delta encoding (10-20x) | Delta, dictionary, Gorilla (10-20x) |
| Write Performance | 100K-500K pts/sec per node | 50K-200K pts/sec per node |
| Query Performance | Excellent for pure TS queries | Excellent, esp. with continuous aggregates |
| Cardinality Handling | Challenging in 2.x (improved in 3.x) | Scales well with proper indexing |
| Relational Joins | Cross-measurement joins only | Full SQL joins to any PostgreSQL table |
| ACID Transactions | No (append-only model) | Yes (full PostgreSQL transactions) |
| Schema Flexibility | Schema-on-write (flexible) | Schema-on-write (structured) |
| Ecosystem | Telegraf, Chronograf, Kapacitor | PostgreSQL ecosystem (thousands of tools) |
| Replication | InfluxDB Enterprise required | PostgreSQL streaming/logical replication |
| Learning Curve | Steep (Flux is unique) | Low (if you know SQL) |
| Managed Options | InfluxDB Cloud | Timescale Cloud, AWS RDS |
Performance Benchmarks:
Benchmarking time-series databases is notoriously difficult because performance varies dramatically based on:
General observations from industry benchmarks (TSBS):
Many organizations use both: InfluxDB for high-velocity metrics ingestion and real-time monitoring dashboards, with data exported to TimescaleDB or a data warehouse for complex historical analysis and business intelligence. The right architecture often involves multiple specialized databases.
We've conducted a deep comparative analysis of the two dominant time-series databases. Let's consolidate the key insights:
What's Next:
Having understood the two primary time-series databases, we'll explore the broader ecosystem of time-series use cases: metrics collection, monitoring infrastructure, log aggregation, and IoT data pipelines. You'll learn how organizations deploy these databases in production at scale.
You now possess a comprehensive understanding of both InfluxDB and TimescaleDB—their architectures, data models, query languages, and trade-offs. You're equipped to evaluate these databases for your specific requirements and make an informed architectural decision.