Loading content...
If a web crawler were a human explorer, the URL frontier would be their to-do list—an ever-growing, constantly shuffled inventory of places yet to visit. But unlike a human's notepad, this list contains billions of entries, requires intelligent prioritization, must avoid duplicates, and needs to coordinate access across hundreds of distributed workers.
The URL frontier is arguably the most critical component of a web crawler's architecture. Get it wrong, and your crawler will waste resources on low-value pages while high-priority content grows stale. Get it right, and your crawler becomes a precision instrument—systematically covering the web while respecting resource constraints.
This page explores the data structures, algorithms, and architectural patterns that make large-scale URL frontier management possible.
By the end of this page, you will understand: (1) The functional requirements of a URL frontier, (2) Data structures for efficient URL storage and retrieval, (3) Priority scheduling algorithms, (4) URL normalization and deduplication techniques, (5) Distributed frontier architectures, and (6) How to balance politeness with throughput.
The URL frontier (also called the crawl frontier or URL queue) is the data structure that stores URLs discovered by the crawler but not yet visited. It serves as the central coordination point between URL discovery and URL fetching.
Core responsibilities of the URL frontier:
| Operation | Description | Target Complexity | Scale |
|---|---|---|---|
| Insert URL | Add a newly discovered URL to the frontier | O(log n) amortized | Billions of inserts/day |
| Get Next URL | Retrieve the highest-priority URL for crawling | O(log n) | Thousands/second |
| Check Duplicate | Verify if URL already exists in frontier or has been crawled | O(1) expected | Billions of lookups/day |
| Mark Complete | Record that a URL has been crawled | O(1) | Thousands/second |
| Get Domain URLs | Retrieve all pending URLs for a specific domain | O(k) where k = domain URLs | Per-domain operations |
| Update Priority | Modify the priority of an existing URL | O(log n) | Rare but needed |
The frontier is not a simple queue. With 50+ billion known URLs on the web, the frontier must handle billions of entries while supporting high-throughput concurrent access from hundreds of workers. In-memory solutions cannot scale; disk-based solutions must be carefully designed for I/O efficiency.
The most effective approach to URL frontier design is a two-level architecture that separates concerns:
Back Queue (Domain-Level Queues):
Front Queue (Priority-Based Selector):
Visual representation of the two-level architecture:
┌─────────────────────────────────────────────────────────────────────────────────┐
│ TWO-LEVEL FRONTIER ARCHITECTURE │
├─────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────────────────────────────────────────────────────────────┐ │
│ │ FRONT QUEUE (Priority Selector) │ │
│ │ │ │
│ │ ┌─────────────────────────────────────────────────────────────────┐ │ │
│ │ │ Priority Heap / Sorted Set │ │ │
│ │ │ │ │ │
│ │ │ ┌──────────────────────────────────────────────────────────┐ │ │ │
│ │ │ │ Domain: wikipedia.org │ Priority: 0.95 │ Ready: Yes │ │ │ │
│ │ │ ├──────────────────────────────────────────────────────────┤ │ │ │
│ │ │ │ Domain: nytimes.com │ Priority: 0.92 │ Ready: Yes │ │ │ │
│ │ │ ├──────────────────────────────────────────────────────────┤ │ │ │
│ │ │ │ Domain: amazon.com │ Priority: 0.88 │ Ready: No │ │ │ │
│ │ │ ├──────────────────────────────────────────────────────────┤ │ │ │
│ │ │ │ Domain: random-blog.net │ Priority: 0.23 │ Ready: Yes │ │ │ │
│ │ │ └──────────────────────────────────────────────────────────┘ │ │ │
│ │ │ │ │ │
│ │ └─────────────────────────────────────────────────────────────────┘ │ │
│ │ │ │
│ └──────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ │ Select highest-priority READY domain │
│ ▼ │
│ ┌──────────────────────────────────────────────────────────────────────────┐ │
│ │ BACK QUEUES (Per-Domain FIFO) │ │
│ │ │ │
│ │ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ │ │
│ │ │ wikipedia.org │ │ nytimes.com │ │ amazon.com │ ... │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ /wiki/PageA │ │ /2024/news/1 │ │ /product/123 │ │ │
│ │ │ /wiki/PageB │ │ /2024/news/2 │ │ /product/456 │ │ │
│ │ │ /wiki/PageC │ │ /2024/news/3 │ │ /product/789 │ │ │
│ │ │ /wiki/PageD │ │ /sports/game │ │ /category/abc │ │ │
│ │ │ ... │ │ ... │ │ ... │ │ │
│ │ │ (1.2M URLs) │ │ (450K URLs) │ │ (2.1M URLs) │ │ │
│ │ └───────┬────────┘ └───────┬────────┘ └───────┬────────┘ │ │
│ │ │ │ │ │ │
│ │ ▼ ▼ ▼ │ │
│ │ Pop one URL Pop one URL Pop one URL │ │
│ │ when selected when selected when selected │ │
│ │ │ │
│ └──────────────────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────────┘
How the two levels interact:
A single global priority queue of all URLs would be prohibitively expensive (billions of entries) and wouldn't naturally support per-domain politeness. The two-level design separates concerns: the front queue handles cross-domain scheduling (relatively small—millions of domains), while back queues handle intra-domain ordering (large but sequential access). This separation enables practical implementation at scale.
With more URLs than you can ever crawl, prioritization is everything. The goal is to maximize the value extracted from each crawl request. Priority can be calculated at multiple levels:
Domain-Level Priority:
Page-Level Priority:
Freshness Priority:
/products is likely more important than /products/subcategory/item/variant/color./article/, /blog/, /news/ suggest content pages; /login, /cart, /checkout suggest transactional pages with less indexable value.1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
// Simplified priority calculation for a URLinterface URLPriorityFactors { // Domain factors (0-1 scale) domainAuthority: number; // From external ranking or PageRank domainTrafficRank: number; // Inverse of traffic rank (higher = more traffic) domainQualityScore: number; // Historical content quality // Page factors (0-1 scale) inboundLinkScore: number; // Normalized inlink count urlDepthScore: number; // Inverse of path depth contentTypeScore: number; // Based on URL pattern analysis discoverySourceScore: number; // Sitemap > navigation > random link // Freshness factors (0-1 scale) timeSinceLastCrawl: number; // Normalized time since last crawl predictedChangeRate: number; // Learned from historical changes contentVolatility: number; // How often content changes} function calculatePriority(factors: URLPriorityFactors): number { // Weights for each factor (tunable hyperparameters) const weights = { domain: 0.3, page: 0.4, freshness: 0.3 }; // Domain score const domainScore = ( factors.domainAuthority * 0.5 + factors.domainTrafficRank * 0.3 + factors.domainQualityScore * 0.2 ); // Page score const pageScore = ( factors.inboundLinkScore * 0.3 + factors.urlDepthScore * 0.25 + factors.contentTypeScore * 0.25 + factors.discoverySourceScore * 0.2 ); // Freshness score (urgency of recrawl) const freshnessScore = ( factors.timeSinceLastCrawl * 0.4 + factors.predictedChangeRate * 0.35 + factors.contentVolatility * 0.25 ); // Combined priority const priority = ( weights.domain * domainScore + weights.page * pageScore + weights.freshness * freshnessScore ); return Math.max(0, Math.min(1, priority)); // Clamp to [0, 1]} // Example usageconst examplePriority = calculatePriority({ domainAuthority: 0.92, // High authority domain (e.g., wikipedia.org) domainTrafficRank: 0.95, // Very high traffic domainQualityScore: 0.88, // Good historical quality inboundLinkScore: 0.75, // Many internal links urlDepthScore: 0.90, // Close to root (/wiki/PageName) contentTypeScore: 0.85, // Looks like content page discoverySourceScore: 0.80, // Found in navigation timeSinceLastCrawl: 0.60, // Moderate time since last crawl predictedChangeRate: 0.40, // Wikipedia pages change occasionally contentVolatility: 0.35 // Content relatively stable}); // Result: ~0.76 (high priority URL)Priority calculation is necessarily heuristic. You're predicting page value before visiting it, using signals that are proxies for true importance. The weights above are illustrative—production systems tune these based on downstream metrics (search quality, content freshness, user engagement). Some crawlers use machine learning models trained on historical crawl outcomes to predict priority.
The same web page can be referenced by many different URL representations. Without URL normalization, the crawler will waste resources fetching duplicate content and bloat the frontier with redundant entries.
Examples of URLs that reference the same content:
https://example.com/page (canonical)
https://example.com/page/ (trailing slash)
https://EXAMPLE.COM/page (uppercase host)
https://example.com/page? (empty query string)
https://example.com/page?a=1&b=2 (query parameters)
https://example.com/page?b=2&a=1 (reordered parameters)
https://example.com/page#section (fragment)
https://example.com/./page (dot segment)
https://example.com/foo/../page (parent reference)
http://example.com:80/page (default port)
https://example.com:443/page (default port for HTTPS)
https://example.com/page?utm_source=x (tracking parameters)
Normalization transforms all variations to a canonical form:
HTTPS://Example.COM/ → https://example.com/https://example.com:443/ → https://example.com/https://example.com/page#section → https://example.com/pagehttps://example.com/%7Euser → https://example.com/~userhttps://example.com/a/b/../c → https://example.com/a/chttps://example.com → https://example.com/utm_source, utm_medium, fbclid, gclid, etc.PHPSESSID, JSESSIONID, sid, etc.?b=2&a=1 → ?a=1&b=2 (consistent ordering)https://example.com/? → https://example.com/<link rel="canonical">, use that URL instead123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
class URLNormalizer { // Known tracking parameters to remove private static TRACKING_PARAMS = new Set([ 'utm_source', 'utm_medium', 'utm_campaign', 'utm_term', 'utm_content', 'fbclid', 'gclid', 'dclid', 'msclkid', 'mc_eid', 'ref', 'source' ]); // Session parameters to remove private static SESSION_PARAMS = new Set([ 'PHPSESSID', 'JSESSIONID', 'ASPSESSIONID', 'sid', 'session_id', 'sessionid' ]); public static normalize(urlString: string): string | null { try { const url = new URL(urlString); // 1. Lowercase scheme and host url.protocol = url.protocol.toLowerCase(); url.hostname = url.hostname.toLowerCase(); // 2. Remove default ports if ( (url.protocol === 'http:' && url.port === '80') || (url.protocol === 'https:' && url.port === '443') ) { url.port = ''; } // 3. Remove fragment url.hash = ''; // 4. Remove dot segments (handled by URL constructor) // The URL constructor already resolves . and .. segments // 5. Process path let path = url.pathname; // Decode percent-encoded unreserved characters path = this.decodeUnreserved(path); // Remove trailing slash for non-root paths (choose one convention) if (path.length > 1 && path.endsWith('/')) { path = path.slice(0, -1); } url.pathname = path; // 6. Process query parameters if (url.search) { const params = new URLSearchParams(url.search); const cleanParams = new URLSearchParams(); // Filter and sort parameters const sortedKeys = Array.from(params.keys()) .filter(key => !this.TRACKING_PARAMS.has(key.toLowerCase())) .filter(key => !this.SESSION_PARAMS.has(key)) .sort(); for (const key of sortedKeys) { const value = params.get(key); if (value !== null && value !== '') { cleanParams.set(key, value); } } url.search = cleanParams.toString() ? '?' + cleanParams.toString() : ''; } return url.toString(); } catch (e) { // Invalid URL return null; } } private static decodeUnreserved(str: string): string { // Unreserved characters per RFC 3986: A-Z a-z 0-9 - . _ ~ return str.replace(/%([0-9A-Fa-f]{2})/g, (match, hex) => { const char = String.fromCharCode(parseInt(hex, 16)); if (/[A-Za-z0-9\-._~]/.test(char)) { return char; } return match.toUpperCase(); // Normalize encoding to uppercase }); } // Normalize relative URL against a base URL public static resolveAndNormalize(base: string, relative: string): string | null { try { const resolved = new URL(relative, base); return this.normalize(resolved.toString()); } catch (e) { return null; } }} // Example usageconsole.log(URLNormalizer.normalize('HTTPS://Example.COM:443/Page?b=2&a=1&utm_source=google#section'));// Output: https://example.com/page?a=1&b=2Aggressive normalization assumes certain parameters don't affect content. This is usually true for tracking parameters but may not be for all sites. Some sites use query parameters for content selection (e.g., ?page=2). Removing these would break pagination. Production normalizers often maintain domain-specific rules for edge cases.
After normalization, we still need to check whether a URL has already been seen—either currently in the frontier or previously crawled. With billions of URLs, this deduplication check must be extremely efficient.
The three states of a URL:
We need data structures that can check membership across billions of entries with minimal false positives and reasonable memory usage.
Bloom Filter Deep Dive:
A Bloom filter is a probabilistic data structure that answers the question "have I seen this element before?" It can say:
The false positive rate is tunable: more bits per element = lower false positive rate.
Bloom Filter Sizing:
- n = number of elements (URLs)
- m = number of bits in filter
- k = number of hash functions
- p = false positive probability
Optimal k = (m/n) × ln(2) ≈ 0.693 × (m/n)
For p = 1%: m/n ≈ 9.6 bits per URL
For p = 0.1%: m/n ≈ 14.4 bits per URL
Example for 50 billion URLs with 1% FP rate:
m = 50B × 10 bits = 500 billion bits = 62.5 GB
k = 7 hash functions
This fits in a single high-memory server or can be partitioned.
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
class BloomFilter { private bits: BitArray; private numHashes: number; private size: number; constructor(expectedItems: number, falsePositiveRate: number) { // Calculate optimal size this.size = Math.ceil( -expectedItems * Math.log(falsePositiveRate) / (Math.log(2) ** 2) ); this.numHashes = Math.ceil( (this.size / expectedItems) * Math.log(2) ); this.bits = new BitArray(this.size); } // Add a URL to the filter add(url: string): void { const hashes = this.getHashes(url); for (const hash of hashes) { this.bits.set(hash % this.size); } } // Check if URL might be in the filter // Returns: false = definitely not seen, true = possibly seen mightContain(url: string): boolean { const hashes = this.getHashes(url); for (const hash of hashes) { if (!this.bits.get(hash % this.size)) { return false; // Definitely not in set } } return true; // Possibly in set (might be false positive) } // Generate k hash values for a URL // Using double hashing: h(i) = h1 + i*h2 private getHashes(url: string): number[] { const h1 = this.hash1(url); const h2 = this.hash2(url); const hashes: number[] = []; for (let i = 0; i < this.numHashes; i++) { hashes.push(Math.abs(h1 + i * h2)); } return hashes; } private hash1(str: string): number { // MurmurHash3 or similar return murmurHash3(str, 0); } private hash2(str: string): number { // Different seed for independence return murmurHash3(str, 0x9747b28c); }} // Usage in frontierclass URLFrontier { private bloomFilter: BloomFilter; private exactStore: URLDatabase; // For recrawl tracking constructor() { // 50 billion URLs, 1% false positive rate this.bloomFilter = new BloomFilter(50_000_000_000, 0.01); } addURL(url: string, priority: number): boolean { const normalized = URLNormalizer.normalize(url); if (!normalized) return false; // Quick check with Bloom filter if (this.bloomFilter.mightContain(normalized)) { // Might be duplicate, do exact check for recrawl scheduling if (this.exactStore.exists(normalized)) { return false; // True duplicate } } // Not seen before, add to filter and queue this.bloomFilter.add(normalized); this.enqueue(normalized, priority); return true; }}Production crawlers often use layered deduplication: (1) A fast in-memory Bloom filter for initial screening, (2) A distributed hash table or database for exact checking when the Bloom filter returns 'possibly seen', and (3) A separate tracking store for crawled URLs that need recrawl scheduling. This balances speed (Bloom filter), correctness (exact store), and functionality (recrawl tracking).
A single-machine frontier cannot scale to billions of URLs. Production web crawlers distribute the frontier across multiple nodes, with careful partitioning to maintain politeness guarantees.
Partitioning Strategies:
Distributed Frontier Architecture Diagram:
┌─────────────────────────────────────────────────────────────────────────────────┐
│ DISTRIBUTED URL FRONTIER │
├─────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────────────────────────────────────────────────────────────┐ │
│ │ URL ROUTER │ │
│ │ │ │
│ │ Incoming URL → hash(domain) % N → Route to Partition │ │
│ │ │ │
│ └──────────────────────────────────────────────────────────────────────────┘ │
│ │ │ │ │ │
│ ▼ ▼ ▼ ▼ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Partition 0 │ │ Partition 1 │ │ Partition 2 │ │ Partition N │ │
│ │ │ │ │ │ │ │ │ │
│ │ ┌──────────┐ │ │ ┌──────────┐ │ │ ┌──────────┐ │ │ ┌──────────┐ │ │
│ │ │Front Q │ │ │ │Front Q │ │ │ │Front Q │ │ │ │Front Q │ │ │
│ │ │(domains) │ │ │ │(domains) │ │ │ │(domains) │ │ │ │(domains) │ │ │
│ │ └──────────┘ │ │ └──────────┘ │ │ └──────────┘ │ │ └──────────┘ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ ▼ │ │ ▼ │ │ ▼ │ │ ▼ │ │
│ │ ┌──────────┐ │ │ ┌──────────┐ │ │ ┌──────────┐ │ │ ┌──────────┐ │ │
│ │ │Back Qs │ │ │ │Back Qs │ │ │ │Back Qs │ │ │ │Back Qs │ │ │
│ │ │(per-dom) │ │ │ │(per-dom) │ │ │ │(per-dom) │ │ │ │(per-dom) │ │ │
│ │ └──────────┘ │ │ └──────────┘ │ │ └──────────┘ │ │ └──────────┘ │ │
│ │ │ │ │ │ │ │ │ │
│ │ ┌──────────┐ │ │ ┌──────────┐ │ │ ┌──────────┐ │ │ ┌──────────┐ │ │
│ │ │Bloom Flt │ │ │ │Bloom Flt │ │ │ │Bloom Flt │ │ │ │Bloom Flt │ │ │
│ │ │(local) │ │ │ │(local) │ │ │ │(local) │ │ │ │(local) │ │ │
│ │ └──────────┘ │ │ └──────────┘ │ │ └──────────┘ │ │ └──────────┘ │ │
│ │ │ │ │ │ │ │ │ │
│ │ Domains: │ │ Domains: │ │ Domains: │ │ Domains: │ │
│ │ example.com │ │ google.com │ │ amazon.com │ │ news.ycombinator │ │
│ │ github.com │ │ facebook.com │ │ netflix.com │ │ reddit.com │ │
│ │ ... │ │ ... │ │ ... │ │ ... │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────────────────────────┐ │
│ │ CRAWLER WORKERS │ │
│ │ │ │
│ │ Workers pull from partitions; each worker can access any partition │ │
│ │ Work stealing: idle workers take from busy partitions │ │
│ │ │ │
│ └──────────────────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────────┘
Key design considerations:
Partition-Local Politeness: Since all URLs for a domain are in one partition, that partition enforces politeness for that domain without cross-node coordination.
Load Balancing: Workers can pull from any partition, naturally balancing load. Work-stealing algorithms help idle workers take work from busy partitions.
Partition-Local Bloom Filters: Each partition maintains its own Bloom filter for its assigned domains, reducing memory pressure and eliminating cross-node dedup checks.
Fault Tolerance: Partitions can be replicated for durability. If a partition node fails, its replica takes over. URLs in flight are requeued.
Large domains like Wikipedia or Amazon have millions of URLs. A single partition might be overwhelmed. Solutions include: (1) Sub-partitioning large domains by URL hash, (2) Dedicated workers for large domains, (3) Rate limiting within partitions to prevent starvation of other domains. The key is identifying hot spots through monitoring and applying targeted solutions.
The web is not static. Pages are created, updated, and deleted constantly. A production crawler must revisit pages to maintain fresh content. But with billions of pages and limited resources, we can't recrawl everything at the same frequency.
The recrawl problem:
Recrawl scheduling strategies:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
interface URLCrawlHistory { url: string; lastCrawledAt: Date; lastModifiedAt: Date | null; contentHash: string; currentInterval: number; // seconds changeHistory: boolean[]; // last N crawls: true = changed, false = unchanged} class AdaptiveRecrawlScheduler { // Interval bounds private static MIN_INTERVAL = 60 * 60; // 1 hour private static MAX_INTERVAL = 30 * 24 * 60 * 60; // 30 days // Adjustment factors private static INCREASE_FACTOR = 1.5; // Slow down if unchanged private static DECREASE_FACTOR = 0.5; // Speed up if changed // Change history window private static HISTORY_WINDOW = 10; /** * Calculate next recrawl time based on whether content changed */ public updateSchedule(history: URLCrawlHistory, contentChanged: boolean): URLCrawlHistory { // Update change history history.changeHistory.push(contentChanged); if (history.changeHistory.length > AdaptiveRecrawlScheduler.HISTORY_WINDOW) { history.changeHistory.shift(); } // Calculate change rate const changeRate = this.calculateChangeRate(history.changeHistory); // Adjust interval based on change rate let newInterval: number; if (contentChanged) { // Content changed: decrease interval (crawl more often) newInterval = history.currentInterval * AdaptiveRecrawlScheduler.DECREASE_FACTOR; } else { // Content unchanged: increase interval (crawl less often) newInterval = history.currentInterval * AdaptiveRecrawlScheduler.INCREASE_FACTOR; } // Apply additional adjustment based on recent change rate // High change rate → even shorter intervals // Low change rate → even longer intervals const rateAdjustment = 1 - (changeRate - 0.5); // Range: 0.5 to 1.5 newInterval *= rateAdjustment; // Clamp to bounds newInterval = Math.max( AdaptiveRecrawlScheduler.MIN_INTERVAL, Math.min(AdaptiveRecrawlScheduler.MAX_INTERVAL, newInterval) ); history.currentInterval = Math.round(newInterval); history.lastCrawledAt = new Date(); return history; } /** * Calculate change rate from history * Returns value between 0 (never changes) and 1 (always changes) */ private calculateChangeRate(history: boolean[]): number { if (history.length === 0) return 0.5; // Unknown, assume moderate const changes = history.filter(h => h).length; return changes / history.length; } /** * Get next recrawl time for a URL */ public getNextCrawlTime(history: URLCrawlHistory): Date { return new Date(history.lastCrawledAt.getTime() + history.currentInterval * 1000); } /** * Check if URL is due for recrawl */ public isDueForRecrawl(history: URLCrawlHistory): boolean { return new Date() >= this.getNextCrawlTime(history); }} // Example usageconst scheduler = new AdaptiveRecrawlScheduler(); // Simulate a news page that changes frequentlylet newsPage: URLCrawlHistory = { url: 'https://news.site/homepage', lastCrawledAt: new Date(Date.now() - 3600000), // 1 hour ago lastModifiedAt: new Date(), contentHash: 'abc123', currentInterval: 86400, // Start at 1 day changeHistory: []}; // Simulate multiple crawls with changesfor (let i = 0; i < 5; i++) { newsPage = scheduler.updateSchedule(newsPage, true); // Changed console.log(`After change ${i+1}: interval = ${newsPage.currentInterval / 3600} hours`);}// Output: Interval converges toward MIN_INTERVAL (1 hour)Use HTTP conditional requests (If-Modified-Since, If-None-Match) to check if a page has changed without downloading the full content. If the server returns 304 Not Modified, you know the page is unchanged without transferring bytes. This dramatically reduces bandwidth for recrawl checks—especially for static pages.
We've explored the URL frontier in depth—the component that determines what your crawler visits and when. Let's consolidate the key insights.
What's Next:
The next page explores Politeness Policies—how to respect the servers you crawl, implement robots.txt compliance, and avoid becoming an unwelcome presence on the web. Politeness is not just about being nice; it's a hard requirement that determines whether your crawler can operate sustainably.
You now understand how to design a URL frontier that can manage billions of URLs efficiently while supporting priority scheduling, deduplication, and distributed operation. The frontier is the brain of your crawler—everything else depends on getting this right.