Below is the implementation of the balloon popping strategy:
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586/** * Recursive Approach (Top-Down DP with Memoization) * Time Complexity: O(n³) - We have O(n²) different subproblems, and for each subproblem, we consider O(n) different values of k * Space Complexity: O(n²) - We use a memoization table of size n×n * * @param {number[]} nums - Array of balloon values * @return {number} - Maximum coins that can be collected */function maxCoinsRecursive(nums) { // Add 1s at the beginning and end const n = nums.length; const newNums = new Array(n + 2); newNums[0] = newNums[n + 1] = 1; for (let i = 1; i <= n; i++) { newNums[i] = nums[i - 1]; } // Initialize memoization table const memo = Array(n + 2).fill().map(() => Array(n + 2).fill(-1)); // Recursive function to compute maximum coins function dp(i, j) { // Base case: no balloons to burst if (i > j) { return 0; } // Check if already computed if (memo[i][j] !== -1) { return memo[i][j]; } // Try each balloon as the last one to burst let maxCoins = 0; for (let k = i; k <= j; k++) { const coins = dp(i, k - 1) + dp(k + 1, j) + newNums[i - 1] * newNums[k] * newNums[j + 1]; maxCoins = Math.max(maxCoins, coins); } // Memoize and return memo[i][j] = maxCoins; return maxCoins; } return dp(1, n);} /** * Iterative Approach (Bottom-Up DP) * Time Complexity: O(n³) - We have three nested loops * Space Complexity: O(n²) - We use a 2D DP table of size (n+2)×(n+2) * * @param {number[]} nums - Array of balloon values * @return {number} - Maximum coins that can be collected */function maxCoins(nums) { // Add 1s at the beginning and end const n = nums.length; const newNums = new Array(n + 2); newNums[0] = newNums[n + 1] = 1; for (let i = 1; i <= n; i++) { newNums[i] = nums[i - 1]; } // Initialize DP table const dp = Array(n + 2).fill().map(() => Array(n + 2).fill(0)); // Fill DP table bottom-up for (let len = 1; len <= n; len++) { for (let i = 1; i <= n - len + 1; i++) { const j = i + len - 1; for (let k = i; k <= j; k++) { dp[i][j] = Math.max( dp[i][j], dp[i][k - 1] + dp[k + 1][j] + newNums[i - 1] * newNums[k] * newNums[j + 1] ); } } } return dp[1][n];} // Test casesconsole.log(maxCoins([3, 1, 5, 8])); // 167console.log(maxCoins([1, 5])); // 10
Let's break down the implementation:
Implement the balloon popping strategy solution in different programming languages.
Below is the implementation of the balloon popping strategy in different programming languages. Select a language tab to view the corresponding code.
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586/** * Recursive Approach (Top-Down DP with Memoization) * Time Complexity: O(n³) - We have O(n²) different subproblems, and for each subproblem, we consider O(n) different values of k * Space Complexity: O(n²) - We use a memoization table of size n×n * * @param {number[]} nums - Array of balloon values * @return {number} - Maximum coins that can be collected */function maxCoinsRecursive(nums) { // Add 1s at the beginning and end const n = nums.length; const newNums = new Array(n + 2); newNums[0] = newNums[n + 1] = 1; for (let i = 1; i <= n; i++) { newNums[i] = nums[i - 1]; } // Initialize memoization table const memo = Array(n + 2).fill().map(() => Array(n + 2).fill(-1)); // Recursive function to compute maximum coins function dp(i, j) { // Base case: no balloons to burst if (i > j) { return 0; } // Check if already computed if (memo[i][j] !== -1) { return memo[i][j]; } // Try each balloon as the last one to burst let maxCoins = 0; for (let k = i; k <= j; k++) { const coins = dp(i, k - 1) + dp(k + 1, j) + newNums[i - 1] * newNums[k] * newNums[j + 1]; maxCoins = Math.max(maxCoins, coins); } // Memoize and return memo[i][j] = maxCoins; return maxCoins; } return dp(1, n);} /** * Iterative Approach (Bottom-Up DP) * Time Complexity: O(n³) - We have three nested loops * Space Complexity: O(n²) - We use a 2D DP table of size (n+2)×(n+2) * * @param {number[]} nums - Array of balloon values * @return {number} - Maximum coins that can be collected */function maxCoins(nums) { // Add 1s at the beginning and end const n = nums.length; const newNums = new Array(n + 2); newNums[0] = newNums[n + 1] = 1; for (let i = 1; i <= n; i++) { newNums[i] = nums[i - 1]; } // Initialize DP table const dp = Array(n + 2).fill().map(() => Array(n + 2).fill(0)); // Fill DP table bottom-up for (let len = 1; len <= n; len++) { for (let i = 1; i <= n - len + 1; i++) { const j = i + len - 1; for (let k = i; k <= j; k++) { dp[i][j] = Math.max( dp[i][j], dp[i][k - 1] + dp[k + 1][j] + newNums[i - 1] * newNums[k] * newNums[j + 1] ); } } } return dp[1][n];} // Test casesconsole.log(maxCoins([3, 1, 5, 8])); // 167console.log(maxCoins([1, 5])); // 10
First, understand that we need to find the maximum coins we can collect by bursting all balloons in the optimal order.
Instead of thinking about which balloon to burst first, think about which balloon to burst last. This allows us to divide the problem into independent subproblems.
Add 1s at the beginning and end of the array to handle edge cases, as specified in the problem.
Define dp[i][j] as the maximum coins we can get by bursting all balloons from index i to j.
For each subarray from i to j, try each balloon k as the last one to burst. The maximum coins are: dp[i][j] = max(dp[i][j], dp[i][k-1] + dp[k+1][j] + nums[i-1] * nums[k] * nums[j+1]).
Implement either a top-down approach with memoization or a bottom-up approach to fill the DP table.
Verify the solution with the provided examples and edge cases.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the balloon popping strategy problem using a different approach than shown above.
When there's only one balloon, the answer is simply the value of that balloon multiplied by the two boundary 1s.
If all balloons have value 0, the maximum coins will also be 0.
Be careful about integer overflow when dealing with large values. The product of three numbers can be quite large.
Below is the implementation of the balloon popping strategy:
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586/** * Recursive Approach (Top-Down DP with Memoization) * Time Complexity: O(n³) - We have O(n²) different subproblems, and for each subproblem, we consider O(n) different values of k * Space Complexity: O(n²) - We use a memoization table of size n×n * * @param {number[]} nums - Array of balloon values * @return {number} - Maximum coins that can be collected */function maxCoinsRecursive(nums) { // Add 1s at the beginning and end const n = nums.length; const newNums = new Array(n + 2); newNums[0] = newNums[n + 1] = 1; for (let i = 1; i <= n; i++) { newNums[i] = nums[i - 1]; } // Initialize memoization table const memo = Array(n + 2).fill().map(() => Array(n + 2).fill(-1)); // Recursive function to compute maximum coins function dp(i, j) { // Base case: no balloons to burst if (i > j) { return 0; } // Check if already computed if (memo[i][j] !== -1) { return memo[i][j]; } // Try each balloon as the last one to burst let maxCoins = 0; for (let k = i; k <= j; k++) { const coins = dp(i, k - 1) + dp(k + 1, j) + newNums[i - 1] * newNums[k] * newNums[j + 1]; maxCoins = Math.max(maxCoins, coins); } // Memoize and return memo[i][j] = maxCoins; return maxCoins; } return dp(1, n);} /** * Iterative Approach (Bottom-Up DP) * Time Complexity: O(n³) - We have three nested loops * Space Complexity: O(n²) - We use a 2D DP table of size (n+2)×(n+2) * * @param {number[]} nums - Array of balloon values * @return {number} - Maximum coins that can be collected */function maxCoins(nums) { // Add 1s at the beginning and end const n = nums.length; const newNums = new Array(n + 2); newNums[0] = newNums[n + 1] = 1; for (let i = 1; i <= n; i++) { newNums[i] = nums[i - 1]; } // Initialize DP table const dp = Array(n + 2).fill().map(() => Array(n + 2).fill(0)); // Fill DP table bottom-up for (let len = 1; len <= n; len++) { for (let i = 1; i <= n - len + 1; i++) { const j = i + len - 1; for (let k = i; k <= j; k++) { dp[i][j] = Math.max( dp[i][j], dp[i][k - 1] + dp[k + 1][j] + newNums[i - 1] * newNums[k] * newNums[j + 1] ); } } } return dp[1][n];} // Test casesconsole.log(maxCoins([3, 1, 5, 8])); // 167console.log(maxCoins([1, 5])); // 10
Let's break down the implementation:
Implement the balloon popping strategy solution in different programming languages.
Below is the implementation of the balloon popping strategy in different programming languages. Select a language tab to view the corresponding code.
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586/** * Recursive Approach (Top-Down DP with Memoization) * Time Complexity: O(n³) - We have O(n²) different subproblems, and for each subproblem, we consider O(n) different values of k * Space Complexity: O(n²) - We use a memoization table of size n×n * * @param {number[]} nums - Array of balloon values * @return {number} - Maximum coins that can be collected */function maxCoinsRecursive(nums) { // Add 1s at the beginning and end const n = nums.length; const newNums = new Array(n + 2); newNums[0] = newNums[n + 1] = 1; for (let i = 1; i <= n; i++) { newNums[i] = nums[i - 1]; } // Initialize memoization table const memo = Array(n + 2).fill().map(() => Array(n + 2).fill(-1)); // Recursive function to compute maximum coins function dp(i, j) { // Base case: no balloons to burst if (i > j) { return 0; } // Check if already computed if (memo[i][j] !== -1) { return memo[i][j]; } // Try each balloon as the last one to burst let maxCoins = 0; for (let k = i; k <= j; k++) { const coins = dp(i, k - 1) + dp(k + 1, j) + newNums[i - 1] * newNums[k] * newNums[j + 1]; maxCoins = Math.max(maxCoins, coins); } // Memoize and return memo[i][j] = maxCoins; return maxCoins; } return dp(1, n);} /** * Iterative Approach (Bottom-Up DP) * Time Complexity: O(n³) - We have three nested loops * Space Complexity: O(n²) - We use a 2D DP table of size (n+2)×(n+2) * * @param {number[]} nums - Array of balloon values * @return {number} - Maximum coins that can be collected */function maxCoins(nums) { // Add 1s at the beginning and end const n = nums.length; const newNums = new Array(n + 2); newNums[0] = newNums[n + 1] = 1; for (let i = 1; i <= n; i++) { newNums[i] = nums[i - 1]; } // Initialize DP table const dp = Array(n + 2).fill().map(() => Array(n + 2).fill(0)); // Fill DP table bottom-up for (let len = 1; len <= n; len++) { for (let i = 1; i <= n - len + 1; i++) { const j = i + len - 1; for (let k = i; k <= j; k++) { dp[i][j] = Math.max( dp[i][j], dp[i][k - 1] + dp[k + 1][j] + newNums[i - 1] * newNums[k] * newNums[j + 1] ); } } } return dp[1][n];} // Test casesconsole.log(maxCoins([3, 1, 5, 8])); // 167console.log(maxCoins([1, 5])); // 10
First, understand that we need to find the maximum coins we can collect by bursting all balloons in the optimal order.
Instead of thinking about which balloon to burst first, think about which balloon to burst last. This allows us to divide the problem into independent subproblems.
Add 1s at the beginning and end of the array to handle edge cases, as specified in the problem.
Define dp[i][j] as the maximum coins we can get by bursting all balloons from index i to j.
For each subarray from i to j, try each balloon k as the last one to burst. The maximum coins are: dp[i][j] = max(dp[i][j], dp[i][k-1] + dp[k+1][j] + nums[i-1] * nums[k] * nums[j+1]).
Implement either a top-down approach with memoization or a bottom-up approach to fill the DP table.
Verify the solution with the provided examples and edge cases.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the balloon popping strategy problem using a different approach than shown above.
When there's only one balloon, the answer is simply the value of that balloon multiplied by the two boundary 1s.
If all balloons have value 0, the maximum coins will also be 0.
Be careful about integer overflow when dealing with large values. The product of three numbers can be quite large.