Below is the implementation of the climbing stairs:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138/** * Calculate the number of distinct ways to climb to the top of a staircase. * Dynamic Programming approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairs(n) { // Base cases if (n === 1) { return 1; } // Initialize DP array const dp = new Array(n + 1); dp[1] = 1; // There is 1 way to climb 1 step dp[2] = 2; // There are 2 ways to climb 2 steps: 1+1 or 2 // Fill the DP array for (let i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n];} /** * Calculate the number of distinct ways to climb to the top of a staircase. * Space-Optimized Dynamic Programming approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairsOptimized(n) { // Base case if (n === 1) { return 1; } // Initialize variables for the first two steps let prev2 = 1; // Ways to climb 1 step let prev1 = 2; // Ways to climb 2 steps // Iterate from step 3 to n for (let i = 3; i <= n; i++) { const current = prev1 + prev2; prev2 = prev1; prev1 = current; } return prev1;} /** * Calculate the number of distinct ways to climb to the top of a staircase. * Matrix Exponentiation approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairsMatrix(n) { // Base case if (n === 1) { return 1; } // Define the base matrix const base = [ [1, 1], [1, 0] ]; // Compute base^(n-1) const result = matrixPower(base, n - 1); // The answer is in the top-left element of the resulting matrix // For n = 2, we want F(2) = 2, which is the top-left element of base^1 // For n = 3, we want F(3) = 3, which is the top-left element of base^2 // And so on... return result[0][0] + result[0][1];} /** * Compute the power of a 2x2 matrix using binary exponentiation. * * @param {number[][]} matrix - The base matrix * @param {number} n - The exponent * @return {number[][]} - The resulting matrix */function matrixPower(matrix, n) { // Base case: matrix^0 = identity matrix if (n === 0) { return [ [1, 0], [0, 1] ]; } // If n is odd, compute matrix^(n-1) * matrix if (n % 2 === 1) { const result = matrixPower(matrix, n - 1); return multiplyMatrices(result, matrix); } // If n is even, compute (matrix^(n/2))^2 const half = matrixPower(matrix, Math.floor(n / 2)); return multiplyMatrices(half, half);} /** * Multiply two 2x2 matrices. * * @param {number[][]} a - First matrix * @param {number[][]} b - Second matrix * @return {number[][]} - The product of the two matrices */function multiplyMatrices(a, b) { return [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]] ];} // Test casesconsole.log(climbStairs(2)); // 2console.log(climbStairs(3)); // 3console.log(climbStairs(4)); // 5console.log(climbStairs(5)); // 8 console.log(climbStairsOptimized(2)); // 2console.log(climbStairsOptimized(3)); // 3console.log(climbStairsOptimized(4)); // 5console.log(climbStairsOptimized(5)); // 8 console.log(climbStairsMatrix(2)); // 2console.log(climbStairsMatrix(3)); // 3console.log(climbStairsMatrix(4)); // 5console.log(climbStairsMatrix(5)); // 8
Let's break down the implementation:
Implement the climbing stairs solution in different programming languages.
Below is the implementation of the climbing stairs in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138/** * Calculate the number of distinct ways to climb to the top of a staircase. * Dynamic Programming approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairs(n) { // Base cases if (n === 1) { return 1; } // Initialize DP array const dp = new Array(n + 1); dp[1] = 1; // There is 1 way to climb 1 step dp[2] = 2; // There are 2 ways to climb 2 steps: 1+1 or 2 // Fill the DP array for (let i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n];} /** * Calculate the number of distinct ways to climb to the top of a staircase. * Space-Optimized Dynamic Programming approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairsOptimized(n) { // Base case if (n === 1) { return 1; } // Initialize variables for the first two steps let prev2 = 1; // Ways to climb 1 step let prev1 = 2; // Ways to climb 2 steps // Iterate from step 3 to n for (let i = 3; i <= n; i++) { const current = prev1 + prev2; prev2 = prev1; prev1 = current; } return prev1;} /** * Calculate the number of distinct ways to climb to the top of a staircase. * Matrix Exponentiation approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairsMatrix(n) { // Base case if (n === 1) { return 1; } // Define the base matrix const base = [ [1, 1], [1, 0] ]; // Compute base^(n-1) const result = matrixPower(base, n - 1); // The answer is in the top-left element of the resulting matrix // For n = 2, we want F(2) = 2, which is the top-left element of base^1 // For n = 3, we want F(3) = 3, which is the top-left element of base^2 // And so on... return result[0][0] + result[0][1];} /** * Compute the power of a 2x2 matrix using binary exponentiation. * * @param {number[][]} matrix - The base matrix * @param {number} n - The exponent * @return {number[][]} - The resulting matrix */function matrixPower(matrix, n) { // Base case: matrix^0 = identity matrix if (n === 0) { return [ [1, 0], [0, 1] ]; } // If n is odd, compute matrix^(n-1) * matrix if (n % 2 === 1) { const result = matrixPower(matrix, n - 1); return multiplyMatrices(result, matrix); } // If n is even, compute (matrix^(n/2))^2 const half = matrixPower(matrix, Math.floor(n / 2)); return multiplyMatrices(half, half);} /** * Multiply two 2x2 matrices. * * @param {number[][]} a - First matrix * @param {number[][]} b - Second matrix * @return {number[][]} - The product of the two matrices */function multiplyMatrices(a, b) { return [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]] ];} // Test casesconsole.log(climbStairs(2)); // 2console.log(climbStairs(3)); // 3console.log(climbStairs(4)); // 5console.log(climbStairs(5)); // 8 console.log(climbStairsOptimized(2)); // 2console.log(climbStairsOptimized(3)); // 3console.log(climbStairsOptimized(4)); // 5console.log(climbStairsOptimized(5)); // 8 console.log(climbStairsMatrix(2)); // 2console.log(climbStairsMatrix(3)); // 3console.log(climbStairsMatrix(4)); // 5console.log(climbStairsMatrix(5)); // 8
Recognize that this problem follows the Fibonacci sequence pattern, where the number of ways to reach a step is the sum of the ways to reach the previous two steps.
Set up the base cases: there is 1 way to climb 1 step and 2 ways to climb 2 steps.
Use dynamic programming to build an array where each element represents the number of ways to reach that step.
Recognize that we only need the previous two values to compute the current value, allowing us to optimize space usage.
For larger inputs, consider using matrix exponentiation to compute the Fibonacci numbers more efficiently.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the climbing stairs problem using a different approach than shown above.
Handle the case where there is only 1 step (return 1).
Handle the case where there are 2 steps (return 2).
Handle large inputs efficiently to avoid stack overflow or timeout issues.
Below is the implementation of the climbing stairs:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138/** * Calculate the number of distinct ways to climb to the top of a staircase. * Dynamic Programming approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairs(n) { // Base cases if (n === 1) { return 1; } // Initialize DP array const dp = new Array(n + 1); dp[1] = 1; // There is 1 way to climb 1 step dp[2] = 2; // There are 2 ways to climb 2 steps: 1+1 or 2 // Fill the DP array for (let i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n];} /** * Calculate the number of distinct ways to climb to the top of a staircase. * Space-Optimized Dynamic Programming approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairsOptimized(n) { // Base case if (n === 1) { return 1; } // Initialize variables for the first two steps let prev2 = 1; // Ways to climb 1 step let prev1 = 2; // Ways to climb 2 steps // Iterate from step 3 to n for (let i = 3; i <= n; i++) { const current = prev1 + prev2; prev2 = prev1; prev1 = current; } return prev1;} /** * Calculate the number of distinct ways to climb to the top of a staircase. * Matrix Exponentiation approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairsMatrix(n) { // Base case if (n === 1) { return 1; } // Define the base matrix const base = [ [1, 1], [1, 0] ]; // Compute base^(n-1) const result = matrixPower(base, n - 1); // The answer is in the top-left element of the resulting matrix // For n = 2, we want F(2) = 2, which is the top-left element of base^1 // For n = 3, we want F(3) = 3, which is the top-left element of base^2 // And so on... return result[0][0] + result[0][1];} /** * Compute the power of a 2x2 matrix using binary exponentiation. * * @param {number[][]} matrix - The base matrix * @param {number} n - The exponent * @return {number[][]} - The resulting matrix */function matrixPower(matrix, n) { // Base case: matrix^0 = identity matrix if (n === 0) { return [ [1, 0], [0, 1] ]; } // If n is odd, compute matrix^(n-1) * matrix if (n % 2 === 1) { const result = matrixPower(matrix, n - 1); return multiplyMatrices(result, matrix); } // If n is even, compute (matrix^(n/2))^2 const half = matrixPower(matrix, Math.floor(n / 2)); return multiplyMatrices(half, half);} /** * Multiply two 2x2 matrices. * * @param {number[][]} a - First matrix * @param {number[][]} b - Second matrix * @return {number[][]} - The product of the two matrices */function multiplyMatrices(a, b) { return [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]] ];} // Test casesconsole.log(climbStairs(2)); // 2console.log(climbStairs(3)); // 3console.log(climbStairs(4)); // 5console.log(climbStairs(5)); // 8 console.log(climbStairsOptimized(2)); // 2console.log(climbStairsOptimized(3)); // 3console.log(climbStairsOptimized(4)); // 5console.log(climbStairsOptimized(5)); // 8 console.log(climbStairsMatrix(2)); // 2console.log(climbStairsMatrix(3)); // 3console.log(climbStairsMatrix(4)); // 5console.log(climbStairsMatrix(5)); // 8
Let's break down the implementation:
Implement the climbing stairs solution in different programming languages.
Below is the implementation of the climbing stairs in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138/** * Calculate the number of distinct ways to climb to the top of a staircase. * Dynamic Programming approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairs(n) { // Base cases if (n === 1) { return 1; } // Initialize DP array const dp = new Array(n + 1); dp[1] = 1; // There is 1 way to climb 1 step dp[2] = 2; // There are 2 ways to climb 2 steps: 1+1 or 2 // Fill the DP array for (let i = 3; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n];} /** * Calculate the number of distinct ways to climb to the top of a staircase. * Space-Optimized Dynamic Programming approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairsOptimized(n) { // Base case if (n === 1) { return 1; } // Initialize variables for the first two steps let prev2 = 1; // Ways to climb 1 step let prev1 = 2; // Ways to climb 2 steps // Iterate from step 3 to n for (let i = 3; i <= n; i++) { const current = prev1 + prev2; prev2 = prev1; prev1 = current; } return prev1;} /** * Calculate the number of distinct ways to climb to the top of a staircase. * Matrix Exponentiation approach. * * @param {number} n - Number of steps in the staircase * @return {number} - Number of distinct ways to climb to the top */function climbStairsMatrix(n) { // Base case if (n === 1) { return 1; } // Define the base matrix const base = [ [1, 1], [1, 0] ]; // Compute base^(n-1) const result = matrixPower(base, n - 1); // The answer is in the top-left element of the resulting matrix // For n = 2, we want F(2) = 2, which is the top-left element of base^1 // For n = 3, we want F(3) = 3, which is the top-left element of base^2 // And so on... return result[0][0] + result[0][1];} /** * Compute the power of a 2x2 matrix using binary exponentiation. * * @param {number[][]} matrix - The base matrix * @param {number} n - The exponent * @return {number[][]} - The resulting matrix */function matrixPower(matrix, n) { // Base case: matrix^0 = identity matrix if (n === 0) { return [ [1, 0], [0, 1] ]; } // If n is odd, compute matrix^(n-1) * matrix if (n % 2 === 1) { const result = matrixPower(matrix, n - 1); return multiplyMatrices(result, matrix); } // If n is even, compute (matrix^(n/2))^2 const half = matrixPower(matrix, Math.floor(n / 2)); return multiplyMatrices(half, half);} /** * Multiply two 2x2 matrices. * * @param {number[][]} a - First matrix * @param {number[][]} b - Second matrix * @return {number[][]} - The product of the two matrices */function multiplyMatrices(a, b) { return [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]] ];} // Test casesconsole.log(climbStairs(2)); // 2console.log(climbStairs(3)); // 3console.log(climbStairs(4)); // 5console.log(climbStairs(5)); // 8 console.log(climbStairsOptimized(2)); // 2console.log(climbStairsOptimized(3)); // 3console.log(climbStairsOptimized(4)); // 5console.log(climbStairsOptimized(5)); // 8 console.log(climbStairsMatrix(2)); // 2console.log(climbStairsMatrix(3)); // 3console.log(climbStairsMatrix(4)); // 5console.log(climbStairsMatrix(5)); // 8
Recognize that this problem follows the Fibonacci sequence pattern, where the number of ways to reach a step is the sum of the ways to reach the previous two steps.
Set up the base cases: there is 1 way to climb 1 step and 2 ways to climb 2 steps.
Use dynamic programming to build an array where each element represents the number of ways to reach that step.
Recognize that we only need the previous two values to compute the current value, allowing us to optimize space usage.
For larger inputs, consider using matrix exponentiation to compute the Fibonacci numbers more efficiently.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the climbing stairs problem using a different approach than shown above.
Handle the case where there is only 1 step (return 1).
Handle the case where there are 2 steps (return 2).
Handle large inputs efficiently to avoid stack overflow or timeout issues.