Below is the implementation of the fibonacci sequence generator:
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980// Naive recursive approachfunction fibonacciRecursive(n) { // Base cases if (n === 0) return 0; if (n === 1) return 1; // Recursive case return fibonacciRecursive(n - 1) + fibonacciRecursive(n - 2);} // Memoization approach (top-down dynamic programming)function fibonacciMemoization(n) { // Create memoization table const memo = {}; function fib(n) { // Check if we've already calculated this value if (n in memo) return memo[n]; // Base cases if (n === 0) return 0; if (n === 1) return 1; // Calculate and store the result memo[n] = fib(n - 1) + fib(n - 2); return memo[n]; } return fib(n);} // Tabulation approach (bottom-up dynamic programming)function fibonacciTabulation(n) { // Handle base cases if (n === 0) return 0; if (n === 1) return 1; // Create table const dp = new Array(n + 1); dp[0] = 0; dp[1] = 1; // Fill the table for (let i = 2; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n];} // Space-optimized iterative approachfunction fibonacciOptimized(n) { // Handle base cases if (n === 0) return 0; if (n === 1) return 1; let a = 0; // F(0) let b = 1; // F(1) let c; // Calculate Fibonacci numbers iteratively for (let i = 2; i <= n; i++) { c = a + b; // F(i) = F(i-2) + F(i-1) a = b; // Update F(i-2) for next iteration b = c; // Update F(i-1) for next iteration } return b;} // Test casesconsole.log(fibonacciRecursive(10)); // 55 (but slow for larger inputs)console.log(fibonacciMemoization(10)); // 55console.log(fibonacciTabulation(10)); // 55console.log(fibonacciOptimized(10)); // 55 // Test with larger input (would be very slow with naive recursion)console.log(fibonacciMemoization(40)); // 102334155console.log(fibonacciTabulation(40)); // 102334155console.log(fibonacciOptimized(40)); // 102334155
Let's break down the implementation:
Implement the fibonacci sequence generator solution in different programming languages.
Below is the implementation of the fibonacci sequence generator in different programming languages. Select a language tab to view the corresponding code.
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980// Naive recursive approachfunction fibonacciRecursive(n) { // Base cases if (n === 0) return 0; if (n === 1) return 1; // Recursive case return fibonacciRecursive(n - 1) + fibonacciRecursive(n - 2);} // Memoization approach (top-down dynamic programming)function fibonacciMemoization(n) { // Create memoization table const memo = {}; function fib(n) { // Check if we've already calculated this value if (n in memo) return memo[n]; // Base cases if (n === 0) return 0; if (n === 1) return 1; // Calculate and store the result memo[n] = fib(n - 1) + fib(n - 2); return memo[n]; } return fib(n);} // Tabulation approach (bottom-up dynamic programming)function fibonacciTabulation(n) { // Handle base cases if (n === 0) return 0; if (n === 1) return 1; // Create table const dp = new Array(n + 1); dp[0] = 0; dp[1] = 1; // Fill the table for (let i = 2; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n];} // Space-optimized iterative approachfunction fibonacciOptimized(n) { // Handle base cases if (n === 0) return 0; if (n === 1) return 1; let a = 0; // F(0) let b = 1; // F(1) let c; // Calculate Fibonacci numbers iteratively for (let i = 2; i <= n; i++) { c = a + b; // F(i) = F(i-2) + F(i-1) a = b; // Update F(i-2) for next iteration b = c; // Update F(i-1) for next iteration } return b;} // Test casesconsole.log(fibonacciRecursive(10)); // 55 (but slow for larger inputs)console.log(fibonacciMemoization(10)); // 55console.log(fibonacciTabulation(10)); // 55console.log(fibonacciOptimized(10)); // 55 // Test with larger input (would be very slow with naive recursion)console.log(fibonacciMemoization(40)); // 102334155console.log(fibonacciTabulation(40)); // 102334155console.log(fibonacciOptimized(40)); // 102334155
The Fibonacci sequence is defined as F(n) = F(n-1) + F(n-2) with base cases F(0) = 0 and F(1) = 1.
For Fibonacci, the base cases are F(0) = 0 and F(1) = 1. These are the stopping conditions for our recursion.
The recursive relation for Fibonacci is F(n) = F(n-1) + F(n-2). This forms the core of our recursive solution.
The naive recursive solution recalculates the same Fibonacci numbers multiple times. Identify this inefficiency.
Use memoization (top-down) or tabulation (bottom-up) to avoid redundant calculations and improve efficiency.
Recognize that we only need the two previous Fibonacci numbers to calculate the next one, allowing for O(1) space complexity.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the fibonacci sequence generator problem using a different approach than shown above.
By definition, F(0) = 0. Make sure your function handles this case correctly.
Similarly, F(1) = 1. This is often used as a base case in recursive implementations.
The naive recursive approach will be extremely slow for large inputs due to exponential time complexity.
Fibonacci numbers grow exponentially, potentially causing integer overflow for large inputs.
Below is the implementation of the fibonacci sequence generator:
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980// Naive recursive approachfunction fibonacciRecursive(n) { // Base cases if (n === 0) return 0; if (n === 1) return 1; // Recursive case return fibonacciRecursive(n - 1) + fibonacciRecursive(n - 2);} // Memoization approach (top-down dynamic programming)function fibonacciMemoization(n) { // Create memoization table const memo = {}; function fib(n) { // Check if we've already calculated this value if (n in memo) return memo[n]; // Base cases if (n === 0) return 0; if (n === 1) return 1; // Calculate and store the result memo[n] = fib(n - 1) + fib(n - 2); return memo[n]; } return fib(n);} // Tabulation approach (bottom-up dynamic programming)function fibonacciTabulation(n) { // Handle base cases if (n === 0) return 0; if (n === 1) return 1; // Create table const dp = new Array(n + 1); dp[0] = 0; dp[1] = 1; // Fill the table for (let i = 2; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n];} // Space-optimized iterative approachfunction fibonacciOptimized(n) { // Handle base cases if (n === 0) return 0; if (n === 1) return 1; let a = 0; // F(0) let b = 1; // F(1) let c; // Calculate Fibonacci numbers iteratively for (let i = 2; i <= n; i++) { c = a + b; // F(i) = F(i-2) + F(i-1) a = b; // Update F(i-2) for next iteration b = c; // Update F(i-1) for next iteration } return b;} // Test casesconsole.log(fibonacciRecursive(10)); // 55 (but slow for larger inputs)console.log(fibonacciMemoization(10)); // 55console.log(fibonacciTabulation(10)); // 55console.log(fibonacciOptimized(10)); // 55 // Test with larger input (would be very slow with naive recursion)console.log(fibonacciMemoization(40)); // 102334155console.log(fibonacciTabulation(40)); // 102334155console.log(fibonacciOptimized(40)); // 102334155
Let's break down the implementation:
Implement the fibonacci sequence generator solution in different programming languages.
Below is the implementation of the fibonacci sequence generator in different programming languages. Select a language tab to view the corresponding code.
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980// Naive recursive approachfunction fibonacciRecursive(n) { // Base cases if (n === 0) return 0; if (n === 1) return 1; // Recursive case return fibonacciRecursive(n - 1) + fibonacciRecursive(n - 2);} // Memoization approach (top-down dynamic programming)function fibonacciMemoization(n) { // Create memoization table const memo = {}; function fib(n) { // Check if we've already calculated this value if (n in memo) return memo[n]; // Base cases if (n === 0) return 0; if (n === 1) return 1; // Calculate and store the result memo[n] = fib(n - 1) + fib(n - 2); return memo[n]; } return fib(n);} // Tabulation approach (bottom-up dynamic programming)function fibonacciTabulation(n) { // Handle base cases if (n === 0) return 0; if (n === 1) return 1; // Create table const dp = new Array(n + 1); dp[0] = 0; dp[1] = 1; // Fill the table for (let i = 2; i <= n; i++) { dp[i] = dp[i - 1] + dp[i - 2]; } return dp[n];} // Space-optimized iterative approachfunction fibonacciOptimized(n) { // Handle base cases if (n === 0) return 0; if (n === 1) return 1; let a = 0; // F(0) let b = 1; // F(1) let c; // Calculate Fibonacci numbers iteratively for (let i = 2; i <= n; i++) { c = a + b; // F(i) = F(i-2) + F(i-1) a = b; // Update F(i-2) for next iteration b = c; // Update F(i-1) for next iteration } return b;} // Test casesconsole.log(fibonacciRecursive(10)); // 55 (but slow for larger inputs)console.log(fibonacciMemoization(10)); // 55console.log(fibonacciTabulation(10)); // 55console.log(fibonacciOptimized(10)); // 55 // Test with larger input (would be very slow with naive recursion)console.log(fibonacciMemoization(40)); // 102334155console.log(fibonacciTabulation(40)); // 102334155console.log(fibonacciOptimized(40)); // 102334155
The Fibonacci sequence is defined as F(n) = F(n-1) + F(n-2) with base cases F(0) = 0 and F(1) = 1.
For Fibonacci, the base cases are F(0) = 0 and F(1) = 1. These are the stopping conditions for our recursion.
The recursive relation for Fibonacci is F(n) = F(n-1) + F(n-2). This forms the core of our recursive solution.
The naive recursive solution recalculates the same Fibonacci numbers multiple times. Identify this inefficiency.
Use memoization (top-down) or tabulation (bottom-up) to avoid redundant calculations and improve efficiency.
Recognize that we only need the two previous Fibonacci numbers to calculate the next one, allowing for O(1) space complexity.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the fibonacci sequence generator problem using a different approach than shown above.
By definition, F(0) = 0. Make sure your function handles this case correctly.
Similarly, F(1) = 1. This is often used as a base case in recursive implementations.
The naive recursive approach will be extremely slow for large inputs due to exponential time complexity.
Fibonacci numbers grow exponentially, potentially causing integer overflow for large inputs.