Below is the implementation of the neighborhood heist:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899/** * Find the maximum amount of money you can rob without alerting the police. * Dynamic Programming approach. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function rob(nums) { const n = nums.length; // Handle edge cases if (n === 0) return 0; if (n === 1) return nums[0]; // Initialize dp array const dp = new Array(n); dp[0] = nums[0]; dp[1] = Math.max(nums[0], nums[1]); // Fill the dp array for (let i = 2; i < n; i++) { dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]); } return dp[n - 1];} /** * Find the maximum amount of money you can rob without alerting the police. * Space-Optimized Dynamic Programming approach. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function robOptimized(nums) { const n = nums.length; // Handle edge cases if (n === 0) return 0; if (n === 1) return nums[0]; // Initialize variables let prev2 = 0; let prev1 = 0; // Iterate through the array for (let i = 0; i < n; i++) { const current = Math.max(prev2 + nums[i], prev1); prev2 = prev1; prev1 = current; } return prev1;} /** * Find the maximum amount of money you can rob without alerting the police. * Recursive approach with memoization. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function robRecursive(nums) { const n = nums.length; const memo = new Array(n).fill(-1); /** * Helper function to calculate the maximum amount of money we can rob starting from the i-th house. * * @param {number} i - Current house index * @return {number} - Maximum amount of money */ function dp(i) { // Base cases if (i >= n) return 0; // Check if we've already computed this subproblem if (memo[i] !== -1) return memo[i]; // Recursive cases: rob the current house or skip it const result = Math.max(nums[i] + dp(i + 2), dp(i + 1)); // Memoize and return memo[i] = result; return result; } return dp(0);} // Test casesconsole.log(rob([1, 2, 3, 1])); // 4console.log(rob([2, 7, 9, 3, 1])); // 12 console.log(robOptimized([1, 2, 3, 1])); // 4console.log(robOptimized([2, 7, 9, 3, 1])); // 12 console.log(robRecursive([1, 2, 3, 1])); // 4console.log(robRecursive([2, 7, 9, 3, 1])); // 12
Let's break down the implementation:
Implement the neighborhood heist solution in different programming languages.
Below is the implementation of the neighborhood heist in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899/** * Find the maximum amount of money you can rob without alerting the police. * Dynamic Programming approach. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function rob(nums) { const n = nums.length; // Handle edge cases if (n === 0) return 0; if (n === 1) return nums[0]; // Initialize dp array const dp = new Array(n); dp[0] = nums[0]; dp[1] = Math.max(nums[0], nums[1]); // Fill the dp array for (let i = 2; i < n; i++) { dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]); } return dp[n - 1];} /** * Find the maximum amount of money you can rob without alerting the police. * Space-Optimized Dynamic Programming approach. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function robOptimized(nums) { const n = nums.length; // Handle edge cases if (n === 0) return 0; if (n === 1) return nums[0]; // Initialize variables let prev2 = 0; let prev1 = 0; // Iterate through the array for (let i = 0; i < n; i++) { const current = Math.max(prev2 + nums[i], prev1); prev2 = prev1; prev1 = current; } return prev1;} /** * Find the maximum amount of money you can rob without alerting the police. * Recursive approach with memoization. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function robRecursive(nums) { const n = nums.length; const memo = new Array(n).fill(-1); /** * Helper function to calculate the maximum amount of money we can rob starting from the i-th house. * * @param {number} i - Current house index * @return {number} - Maximum amount of money */ function dp(i) { // Base cases if (i >= n) return 0; // Check if we've already computed this subproblem if (memo[i] !== -1) return memo[i]; // Recursive cases: rob the current house or skip it const result = Math.max(nums[i] + dp(i + 2), dp(i + 1)); // Memoize and return memo[i] = result; return result; } return dp(0);} // Test casesconsole.log(rob([1, 2, 3, 1])); // 4console.log(rob([2, 7, 9, 3, 1])); // 12 console.log(robOptimized([1, 2, 3, 1])); // 4console.log(robOptimized([2, 7, 9, 3, 1])); // 12 console.log(robRecursive([1, 2, 3, 1])); // 4console.log(robRecursive([2, 7, 9, 3, 1])); // 12
First, understand that we need to find the maximum amount of money we can rob without alerting the police, which means we can't rob adjacent houses.
Define the state dp[i] as the maximum amount of money we can rob up to the i-th house.
For each house, we have two options: rob it or skip it. We choose the option that gives us the maximum amount: dp[i] = max(dp[i-2] + nums[i], dp[i-1]).
Handle base cases: dp[0] = nums[0] and dp[1] = max(nums[0], nums[1]).
Implement the solution using dynamic programming, space-optimized dynamic programming, or recursive approach with memoization.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the neighborhood heist problem using a different approach than shown above.
Handle the case where the input array is empty (return 0).
Handle the case where there's only one house (return the amount of money in that house).
Handle the case where there are two houses (return the maximum amount of money between the two houses).
Below is the implementation of the neighborhood heist:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899/** * Find the maximum amount of money you can rob without alerting the police. * Dynamic Programming approach. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function rob(nums) { const n = nums.length; // Handle edge cases if (n === 0) return 0; if (n === 1) return nums[0]; // Initialize dp array const dp = new Array(n); dp[0] = nums[0]; dp[1] = Math.max(nums[0], nums[1]); // Fill the dp array for (let i = 2; i < n; i++) { dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]); } return dp[n - 1];} /** * Find the maximum amount of money you can rob without alerting the police. * Space-Optimized Dynamic Programming approach. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function robOptimized(nums) { const n = nums.length; // Handle edge cases if (n === 0) return 0; if (n === 1) return nums[0]; // Initialize variables let prev2 = 0; let prev1 = 0; // Iterate through the array for (let i = 0; i < n; i++) { const current = Math.max(prev2 + nums[i], prev1); prev2 = prev1; prev1 = current; } return prev1;} /** * Find the maximum amount of money you can rob without alerting the police. * Recursive approach with memoization. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function robRecursive(nums) { const n = nums.length; const memo = new Array(n).fill(-1); /** * Helper function to calculate the maximum amount of money we can rob starting from the i-th house. * * @param {number} i - Current house index * @return {number} - Maximum amount of money */ function dp(i) { // Base cases if (i >= n) return 0; // Check if we've already computed this subproblem if (memo[i] !== -1) return memo[i]; // Recursive cases: rob the current house or skip it const result = Math.max(nums[i] + dp(i + 2), dp(i + 1)); // Memoize and return memo[i] = result; return result; } return dp(0);} // Test casesconsole.log(rob([1, 2, 3, 1])); // 4console.log(rob([2, 7, 9, 3, 1])); // 12 console.log(robOptimized([1, 2, 3, 1])); // 4console.log(robOptimized([2, 7, 9, 3, 1])); // 12 console.log(robRecursive([1, 2, 3, 1])); // 4console.log(robRecursive([2, 7, 9, 3, 1])); // 12
Let's break down the implementation:
Implement the neighborhood heist solution in different programming languages.
Below is the implementation of the neighborhood heist in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899/** * Find the maximum amount of money you can rob without alerting the police. * Dynamic Programming approach. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function rob(nums) { const n = nums.length; // Handle edge cases if (n === 0) return 0; if (n === 1) return nums[0]; // Initialize dp array const dp = new Array(n); dp[0] = nums[0]; dp[1] = Math.max(nums[0], nums[1]); // Fill the dp array for (let i = 2; i < n; i++) { dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]); } return dp[n - 1];} /** * Find the maximum amount of money you can rob without alerting the police. * Space-Optimized Dynamic Programming approach. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function robOptimized(nums) { const n = nums.length; // Handle edge cases if (n === 0) return 0; if (n === 1) return nums[0]; // Initialize variables let prev2 = 0; let prev1 = 0; // Iterate through the array for (let i = 0; i < n; i++) { const current = Math.max(prev2 + nums[i], prev1); prev2 = prev1; prev1 = current; } return prev1;} /** * Find the maximum amount of money you can rob without alerting the police. * Recursive approach with memoization. * * @param {number[]} nums - Array of money in each house * @return {number} - Maximum amount of money */function robRecursive(nums) { const n = nums.length; const memo = new Array(n).fill(-1); /** * Helper function to calculate the maximum amount of money we can rob starting from the i-th house. * * @param {number} i - Current house index * @return {number} - Maximum amount of money */ function dp(i) { // Base cases if (i >= n) return 0; // Check if we've already computed this subproblem if (memo[i] !== -1) return memo[i]; // Recursive cases: rob the current house or skip it const result = Math.max(nums[i] + dp(i + 2), dp(i + 1)); // Memoize and return memo[i] = result; return result; } return dp(0);} // Test casesconsole.log(rob([1, 2, 3, 1])); // 4console.log(rob([2, 7, 9, 3, 1])); // 12 console.log(robOptimized([1, 2, 3, 1])); // 4console.log(robOptimized([2, 7, 9, 3, 1])); // 12 console.log(robRecursive([1, 2, 3, 1])); // 4console.log(robRecursive([2, 7, 9, 3, 1])); // 12
First, understand that we need to find the maximum amount of money we can rob without alerting the police, which means we can't rob adjacent houses.
Define the state dp[i] as the maximum amount of money we can rob up to the i-th house.
For each house, we have two options: rob it or skip it. We choose the option that gives us the maximum amount: dp[i] = max(dp[i-2] + nums[i], dp[i-1]).
Handle base cases: dp[0] = nums[0] and dp[1] = max(nums[0], nums[1]).
Implement the solution using dynamic programming, space-optimized dynamic programming, or recursive approach with memoization.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the neighborhood heist problem using a different approach than shown above.
Handle the case where the input array is empty (return 0).
Handle the case where there's only one house (return the amount of money in that house).
Handle the case where there are two houses (return the maximum amount of money between the two houses).