Below is the implementation of the element rank finder:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139/** * Sorting Approach * Time Complexity: O(n log n) - Dominated by the sorting operation * Space Complexity: O(1) - Assuming in-place sort * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargestSorting(nums, k) { // Sort the array in descending order nums.sort((a, b) => b - a); // Return the kth largest element return nums[k - 1];} /** * Min Heap Approach * Time Complexity: O(n log k) - Where n is the length of the array * Space Complexity: O(k) - For storing the heap of size k * * Note: JavaScript doesn't have a built-in heap, so we'll implement a simple min heap * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargestMinHeap(nums, k) { // Create a min heap of size k const heap = []; // Helper function to maintain heap property const heapify = (i) => { const left = 2 * i + 1; const right = 2 * i + 2; let smallest = i; if (left < heap.length && heap[left] < heap[smallest]) { smallest = left; } if (right < heap.length && heap[right] < heap[smallest]) { smallest = right; } if (smallest !== i) { [heap[i], heap[smallest]] = [heap[smallest], heap[i]]; heapify(smallest); } }; // Add element to heap const addToHeap = (num) => { heap.push(num); let i = heap.length - 1; let parent = Math.floor((i - 1) / 2); while (i > 0 && heap[i] < heap[parent]) { [heap[i], heap[parent]] = [heap[parent], heap[i]]; i = parent; parent = Math.floor((i - 1) / 2); } }; // Remove top element from heap const pollFromHeap = () => { const top = heap[0]; heap[0] = heap[heap.length - 1]; heap.pop(); heapify(0); return top; }; // Process all elements for (const num of nums) { addToHeap(num); if (heap.length > k) { pollFromHeap(); } } // Return the top of the heap (the kth largest element) return heap[0];} /** * QuickSelect Approach * Time Complexity: O(n) average, O(n²) worst case * Space Complexity: O(1) - In-place partitioning * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargest(nums, k) { // QuickSelect algorithm return quickSelect(nums, 0, nums.length - 1, k - 1);} function quickSelect(nums, left, right, k) { if (left === right) { return nums[left]; } // Choose pivot (rightmost element) const pivotIndex = partition(nums, left, right); if (pivotIndex === k) { return nums[pivotIndex]; } else if (pivotIndex < k) { return quickSelect(nums, pivotIndex + 1, right, k); } else { return quickSelect(nums, left, pivotIndex - 1, k); }} function partition(nums, left, right) { // Choose pivot (rightmost element) const pivot = nums[right]; let i = left; // Partition around pivot for (let j = left; j < right; j++) { if (nums[j] >= pivot) { [nums[i], nums[j]] = [nums[j], nums[i]]; i++; } } // Place pivot in its final position [nums[i], nums[right]] = [nums[right], nums[i]]; return i;} // Test casesconsole.log(findKthLargest([3, 2, 1, 5, 6, 4], 2)); // 5console.log(findKthLargest([3, 2, 3, 1, 2, 4, 5, 5, 6], 4)); // 4
Let's break down the implementation:
Implement the element rank finder solution in different programming languages.
Below is the implementation of the element rank finder in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139/** * Sorting Approach * Time Complexity: O(n log n) - Dominated by the sorting operation * Space Complexity: O(1) - Assuming in-place sort * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargestSorting(nums, k) { // Sort the array in descending order nums.sort((a, b) => b - a); // Return the kth largest element return nums[k - 1];} /** * Min Heap Approach * Time Complexity: O(n log k) - Where n is the length of the array * Space Complexity: O(k) - For storing the heap of size k * * Note: JavaScript doesn't have a built-in heap, so we'll implement a simple min heap * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargestMinHeap(nums, k) { // Create a min heap of size k const heap = []; // Helper function to maintain heap property const heapify = (i) => { const left = 2 * i + 1; const right = 2 * i + 2; let smallest = i; if (left < heap.length && heap[left] < heap[smallest]) { smallest = left; } if (right < heap.length && heap[right] < heap[smallest]) { smallest = right; } if (smallest !== i) { [heap[i], heap[smallest]] = [heap[smallest], heap[i]]; heapify(smallest); } }; // Add element to heap const addToHeap = (num) => { heap.push(num); let i = heap.length - 1; let parent = Math.floor((i - 1) / 2); while (i > 0 && heap[i] < heap[parent]) { [heap[i], heap[parent]] = [heap[parent], heap[i]]; i = parent; parent = Math.floor((i - 1) / 2); } }; // Remove top element from heap const pollFromHeap = () => { const top = heap[0]; heap[0] = heap[heap.length - 1]; heap.pop(); heapify(0); return top; }; // Process all elements for (const num of nums) { addToHeap(num); if (heap.length > k) { pollFromHeap(); } } // Return the top of the heap (the kth largest element) return heap[0];} /** * QuickSelect Approach * Time Complexity: O(n) average, O(n²) worst case * Space Complexity: O(1) - In-place partitioning * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargest(nums, k) { // QuickSelect algorithm return quickSelect(nums, 0, nums.length - 1, k - 1);} function quickSelect(nums, left, right, k) { if (left === right) { return nums[left]; } // Choose pivot (rightmost element) const pivotIndex = partition(nums, left, right); if (pivotIndex === k) { return nums[pivotIndex]; } else if (pivotIndex < k) { return quickSelect(nums, pivotIndex + 1, right, k); } else { return quickSelect(nums, left, pivotIndex - 1, k); }} function partition(nums, left, right) { // Choose pivot (rightmost element) const pivot = nums[right]; let i = left; // Partition around pivot for (let j = left; j < right; j++) { if (nums[j] >= pivot) { [nums[i], nums[j]] = [nums[j], nums[i]]; i++; } } // Place pivot in its final position [nums[i], nums[right]] = [nums[right], nums[i]]; return i;} // Test casesconsole.log(findKthLargest([3, 2, 1, 5, 6, 4], 2)); // 5console.log(findKthLargest([3, 2, 3, 1, 2, 4, 5, 5, 6], 4)); // 4
First, understand that we need to find the kth largest element in an unsorted array, where the kth largest element is the element that would be at index k-1 in the array sorted in descending order.
Decide which approach to use: sorting the array, using a min heap of size k, or using the QuickSelect algorithm.
Sort the array in descending order and return the element at index k-1. This is the simplest approach but has O(n log n) time complexity.
Maintain a min heap of size k. Add each element to the heap and remove the smallest element if the heap size exceeds k. The top of the heap will be the kth largest element.
Use the QuickSelect algorithm to find the kth largest element in O(n) average time. This is the most efficient approach for large arrays.
Consider edge cases such as k = 1, k = nums.length, or when the array contains duplicate elements.
Verify the solution with the provided examples and additional test cases.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the element rank finder problem using a different approach than shown above.
If k = 1, we need to find the largest element in the array.
If k equals the length of the array, we need to find the smallest element in the array.
The array may contain duplicate elements, which should be treated as separate elements for ranking purposes.
If the array contains only one element, that element is both the largest and the smallest.
Below is the implementation of the element rank finder:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139/** * Sorting Approach * Time Complexity: O(n log n) - Dominated by the sorting operation * Space Complexity: O(1) - Assuming in-place sort * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargestSorting(nums, k) { // Sort the array in descending order nums.sort((a, b) => b - a); // Return the kth largest element return nums[k - 1];} /** * Min Heap Approach * Time Complexity: O(n log k) - Where n is the length of the array * Space Complexity: O(k) - For storing the heap of size k * * Note: JavaScript doesn't have a built-in heap, so we'll implement a simple min heap * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargestMinHeap(nums, k) { // Create a min heap of size k const heap = []; // Helper function to maintain heap property const heapify = (i) => { const left = 2 * i + 1; const right = 2 * i + 2; let smallest = i; if (left < heap.length && heap[left] < heap[smallest]) { smallest = left; } if (right < heap.length && heap[right] < heap[smallest]) { smallest = right; } if (smallest !== i) { [heap[i], heap[smallest]] = [heap[smallest], heap[i]]; heapify(smallest); } }; // Add element to heap const addToHeap = (num) => { heap.push(num); let i = heap.length - 1; let parent = Math.floor((i - 1) / 2); while (i > 0 && heap[i] < heap[parent]) { [heap[i], heap[parent]] = [heap[parent], heap[i]]; i = parent; parent = Math.floor((i - 1) / 2); } }; // Remove top element from heap const pollFromHeap = () => { const top = heap[0]; heap[0] = heap[heap.length - 1]; heap.pop(); heapify(0); return top; }; // Process all elements for (const num of nums) { addToHeap(num); if (heap.length > k) { pollFromHeap(); } } // Return the top of the heap (the kth largest element) return heap[0];} /** * QuickSelect Approach * Time Complexity: O(n) average, O(n²) worst case * Space Complexity: O(1) - In-place partitioning * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargest(nums, k) { // QuickSelect algorithm return quickSelect(nums, 0, nums.length - 1, k - 1);} function quickSelect(nums, left, right, k) { if (left === right) { return nums[left]; } // Choose pivot (rightmost element) const pivotIndex = partition(nums, left, right); if (pivotIndex === k) { return nums[pivotIndex]; } else if (pivotIndex < k) { return quickSelect(nums, pivotIndex + 1, right, k); } else { return quickSelect(nums, left, pivotIndex - 1, k); }} function partition(nums, left, right) { // Choose pivot (rightmost element) const pivot = nums[right]; let i = left; // Partition around pivot for (let j = left; j < right; j++) { if (nums[j] >= pivot) { [nums[i], nums[j]] = [nums[j], nums[i]]; i++; } } // Place pivot in its final position [nums[i], nums[right]] = [nums[right], nums[i]]; return i;} // Test casesconsole.log(findKthLargest([3, 2, 1, 5, 6, 4], 2)); // 5console.log(findKthLargest([3, 2, 3, 1, 2, 4, 5, 5, 6], 4)); // 4
Let's break down the implementation:
Implement the element rank finder solution in different programming languages.
Below is the implementation of the element rank finder in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139/** * Sorting Approach * Time Complexity: O(n log n) - Dominated by the sorting operation * Space Complexity: O(1) - Assuming in-place sort * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargestSorting(nums, k) { // Sort the array in descending order nums.sort((a, b) => b - a); // Return the kth largest element return nums[k - 1];} /** * Min Heap Approach * Time Complexity: O(n log k) - Where n is the length of the array * Space Complexity: O(k) - For storing the heap of size k * * Note: JavaScript doesn't have a built-in heap, so we'll implement a simple min heap * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargestMinHeap(nums, k) { // Create a min heap of size k const heap = []; // Helper function to maintain heap property const heapify = (i) => { const left = 2 * i + 1; const right = 2 * i + 2; let smallest = i; if (left < heap.length && heap[left] < heap[smallest]) { smallest = left; } if (right < heap.length && heap[right] < heap[smallest]) { smallest = right; } if (smallest !== i) { [heap[i], heap[smallest]] = [heap[smallest], heap[i]]; heapify(smallest); } }; // Add element to heap const addToHeap = (num) => { heap.push(num); let i = heap.length - 1; let parent = Math.floor((i - 1) / 2); while (i > 0 && heap[i] < heap[parent]) { [heap[i], heap[parent]] = [heap[parent], heap[i]]; i = parent; parent = Math.floor((i - 1) / 2); } }; // Remove top element from heap const pollFromHeap = () => { const top = heap[0]; heap[0] = heap[heap.length - 1]; heap.pop(); heapify(0); return top; }; // Process all elements for (const num of nums) { addToHeap(num); if (heap.length > k) { pollFromHeap(); } } // Return the top of the heap (the kth largest element) return heap[0];} /** * QuickSelect Approach * Time Complexity: O(n) average, O(n²) worst case * Space Complexity: O(1) - In-place partitioning * * @param {number[]} nums - Array of numbers * @param {number} k - Position of the element to find * @return {number} - The kth largest element */function findKthLargest(nums, k) { // QuickSelect algorithm return quickSelect(nums, 0, nums.length - 1, k - 1);} function quickSelect(nums, left, right, k) { if (left === right) { return nums[left]; } // Choose pivot (rightmost element) const pivotIndex = partition(nums, left, right); if (pivotIndex === k) { return nums[pivotIndex]; } else if (pivotIndex < k) { return quickSelect(nums, pivotIndex + 1, right, k); } else { return quickSelect(nums, left, pivotIndex - 1, k); }} function partition(nums, left, right) { // Choose pivot (rightmost element) const pivot = nums[right]; let i = left; // Partition around pivot for (let j = left; j < right; j++) { if (nums[j] >= pivot) { [nums[i], nums[j]] = [nums[j], nums[i]]; i++; } } // Place pivot in its final position [nums[i], nums[right]] = [nums[right], nums[i]]; return i;} // Test casesconsole.log(findKthLargest([3, 2, 1, 5, 6, 4], 2)); // 5console.log(findKthLargest([3, 2, 3, 1, 2, 4, 5, 5, 6], 4)); // 4
First, understand that we need to find the kth largest element in an unsorted array, where the kth largest element is the element that would be at index k-1 in the array sorted in descending order.
Decide which approach to use: sorting the array, using a min heap of size k, or using the QuickSelect algorithm.
Sort the array in descending order and return the element at index k-1. This is the simplest approach but has O(n log n) time complexity.
Maintain a min heap of size k. Add each element to the heap and remove the smallest element if the heap size exceeds k. The top of the heap will be the kth largest element.
Use the QuickSelect algorithm to find the kth largest element in O(n) average time. This is the most efficient approach for large arrays.
Consider edge cases such as k = 1, k = nums.length, or when the array contains duplicate elements.
Verify the solution with the provided examples and additional test cases.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the element rank finder problem using a different approach than shown above.
If k = 1, we need to find the largest element in the array.
If k equals the length of the array, we need to find the smallest element in the array.
The array may contain duplicate elements, which should be treated as separate elements for ranking purposes.
If the array contains only one element, that element is both the largest and the smallest.