Below is the implementation of the fibonacci subsequence finder:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139/** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Dynamic Programming with Hash Map approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseq(arr) { const n = arr.length; // Create a hash map for quick lookup const index = new Map(); for (let i = 0; i < n; i++) { index.set(arr[i], i); } // Initialize DP table const dp = Array(n).fill().map(() => Array(n).fill(0)); let maxLength = 0; for (let j = 0; j < n; j++) { for (let i = 0; i < j; i++) { // Compute the previous element in the Fibonacci sequence const prev = arr[j] - arr[i]; // Check if prev exists and is smaller than arr[i] if (prev < arr[i] && index.has(prev)) { const k = index.get(prev); // Update DP table dp[i][j] = dp[k][i] > 0 ? dp[k][i] + 1 : 3; // Update maxLength maxLength = Math.max(maxLength, dp[i][j]); } } } return maxLength;} /** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Optimized Dynamic Programming approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseqOptimized(arr) { const n = arr.length; // Create a hash map for quick lookup const index = new Map(); for (let i = 0; i < n; i++) { index.set(arr[i], i); } // Initialize DP hash map const dp = new Map(); let maxLength = 0; for (let j = 0; j < n; j++) { for (let i = 0; i < j; i++) { // Compute the previous element in the Fibonacci sequence const prev = arr[j] - arr[i]; // Check if prev exists and is smaller than arr[i] if (prev < arr[i] && index.has(prev)) { const k = index.get(prev); // Create keys for the DP hash map const key1 = k * n + i; const key2 = i * n + j; // Update DP hash map dp.set(key2, dp.has(key1) ? dp.get(key1) + 1 : 3); // Update maxLength maxLength = Math.max(maxLength, dp.get(key2)); } } } return maxLength;} /** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Brute Force approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseqBruteForce(arr) { const n = arr.length; // Create a hash set for quick lookup const set = new Set(arr); let maxLength = 0; for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { let a = arr[i]; let b = arr[j]; let length = 2; // Try to extend the Fibonacci sequence while (set.has(a + b)) { const next = a + b; a = b; b = next; length++; } // Update maxLength if we found a Fibonacci sequence of length at least 3 if (length >= 3) { maxLength = Math.max(maxLength, length); } } } return maxLength;} // Test casesconsole.log(lenLongestFibSubseq([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseq([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseq([1, 2, 4, 8, 16])); // 0 console.log(lenLongestFibSubseqOptimized([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseqOptimized([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseqOptimized([1, 2, 4, 8, 16])); // 0 console.log(lenLongestFibSubseqBruteForce([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseqBruteForce([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseqBruteForce([1, 2, 4, 8, 16])); // 0
Let's break down the implementation:
Implement the fibonacci subsequence finder solution in different programming languages.
Below is the implementation of the fibonacci subsequence finder in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139/** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Dynamic Programming with Hash Map approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseq(arr) { const n = arr.length; // Create a hash map for quick lookup const index = new Map(); for (let i = 0; i < n; i++) { index.set(arr[i], i); } // Initialize DP table const dp = Array(n).fill().map(() => Array(n).fill(0)); let maxLength = 0; for (let j = 0; j < n; j++) { for (let i = 0; i < j; i++) { // Compute the previous element in the Fibonacci sequence const prev = arr[j] - arr[i]; // Check if prev exists and is smaller than arr[i] if (prev < arr[i] && index.has(prev)) { const k = index.get(prev); // Update DP table dp[i][j] = dp[k][i] > 0 ? dp[k][i] + 1 : 3; // Update maxLength maxLength = Math.max(maxLength, dp[i][j]); } } } return maxLength;} /** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Optimized Dynamic Programming approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseqOptimized(arr) { const n = arr.length; // Create a hash map for quick lookup const index = new Map(); for (let i = 0; i < n; i++) { index.set(arr[i], i); } // Initialize DP hash map const dp = new Map(); let maxLength = 0; for (let j = 0; j < n; j++) { for (let i = 0; i < j; i++) { // Compute the previous element in the Fibonacci sequence const prev = arr[j] - arr[i]; // Check if prev exists and is smaller than arr[i] if (prev < arr[i] && index.has(prev)) { const k = index.get(prev); // Create keys for the DP hash map const key1 = k * n + i; const key2 = i * n + j; // Update DP hash map dp.set(key2, dp.has(key1) ? dp.get(key1) + 1 : 3); // Update maxLength maxLength = Math.max(maxLength, dp.get(key2)); } } } return maxLength;} /** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Brute Force approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseqBruteForce(arr) { const n = arr.length; // Create a hash set for quick lookup const set = new Set(arr); let maxLength = 0; for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { let a = arr[i]; let b = arr[j]; let length = 2; // Try to extend the Fibonacci sequence while (set.has(a + b)) { const next = a + b; a = b; b = next; length++; } // Update maxLength if we found a Fibonacci sequence of length at least 3 if (length >= 3) { maxLength = Math.max(maxLength, length); } } } return maxLength;} // Test casesconsole.log(lenLongestFibSubseq([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseq([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseq([1, 2, 4, 8, 16])); // 0 console.log(lenLongestFibSubseqOptimized([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseqOptimized([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseqOptimized([1, 2, 4, 8, 16])); // 0 console.log(lenLongestFibSubseqBruteForce([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseqBruteForce([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseqBruteForce([1, 2, 4, 8, 16])); // 0
First, understand that we need to find the length of the longest subsequence that forms a Fibonacci sequence in a strictly increasing array.
Recognize that a Fibonacci sequence is uniquely determined by its first two elements, so we can try all possible pairs as starting points.
Create a hash map to store the indices of elements in the array for quick lookup.
Initialize a 2D DP table where dp[i][j] represents the length of the longest Fibonacci subsequence ending with arr[i] and arr[j].
For each pair of indices (i, j), compute the previous element in the Fibonacci sequence and update the DP table if the previous element exists.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the fibonacci subsequence finder problem using a different approach than shown above.
Handle the case where there is no Fibonacci subsequence of length at least 3 (return 0).
Handle the case where there are multiple Fibonacci subsequences of the same length (return the length of the longest one).
Handle the case where the array has only 3 elements (the minimum required for a Fibonacci subsequence).
Below is the implementation of the fibonacci subsequence finder:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139/** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Dynamic Programming with Hash Map approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseq(arr) { const n = arr.length; // Create a hash map for quick lookup const index = new Map(); for (let i = 0; i < n; i++) { index.set(arr[i], i); } // Initialize DP table const dp = Array(n).fill().map(() => Array(n).fill(0)); let maxLength = 0; for (let j = 0; j < n; j++) { for (let i = 0; i < j; i++) { // Compute the previous element in the Fibonacci sequence const prev = arr[j] - arr[i]; // Check if prev exists and is smaller than arr[i] if (prev < arr[i] && index.has(prev)) { const k = index.get(prev); // Update DP table dp[i][j] = dp[k][i] > 0 ? dp[k][i] + 1 : 3; // Update maxLength maxLength = Math.max(maxLength, dp[i][j]); } } } return maxLength;} /** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Optimized Dynamic Programming approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseqOptimized(arr) { const n = arr.length; // Create a hash map for quick lookup const index = new Map(); for (let i = 0; i < n; i++) { index.set(arr[i], i); } // Initialize DP hash map const dp = new Map(); let maxLength = 0; for (let j = 0; j < n; j++) { for (let i = 0; i < j; i++) { // Compute the previous element in the Fibonacci sequence const prev = arr[j] - arr[i]; // Check if prev exists and is smaller than arr[i] if (prev < arr[i] && index.has(prev)) { const k = index.get(prev); // Create keys for the DP hash map const key1 = k * n + i; const key2 = i * n + j; // Update DP hash map dp.set(key2, dp.has(key1) ? dp.get(key1) + 1 : 3); // Update maxLength maxLength = Math.max(maxLength, dp.get(key2)); } } } return maxLength;} /** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Brute Force approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseqBruteForce(arr) { const n = arr.length; // Create a hash set for quick lookup const set = new Set(arr); let maxLength = 0; for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { let a = arr[i]; let b = arr[j]; let length = 2; // Try to extend the Fibonacci sequence while (set.has(a + b)) { const next = a + b; a = b; b = next; length++; } // Update maxLength if we found a Fibonacci sequence of length at least 3 if (length >= 3) { maxLength = Math.max(maxLength, length); } } } return maxLength;} // Test casesconsole.log(lenLongestFibSubseq([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseq([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseq([1, 2, 4, 8, 16])); // 0 console.log(lenLongestFibSubseqOptimized([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseqOptimized([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseqOptimized([1, 2, 4, 8, 16])); // 0 console.log(lenLongestFibSubseqBruteForce([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseqBruteForce([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseqBruteForce([1, 2, 4, 8, 16])); // 0
Let's break down the implementation:
Implement the fibonacci subsequence finder solution in different programming languages.
Below is the implementation of the fibonacci subsequence finder in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139/** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Dynamic Programming with Hash Map approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseq(arr) { const n = arr.length; // Create a hash map for quick lookup const index = new Map(); for (let i = 0; i < n; i++) { index.set(arr[i], i); } // Initialize DP table const dp = Array(n).fill().map(() => Array(n).fill(0)); let maxLength = 0; for (let j = 0; j < n; j++) { for (let i = 0; i < j; i++) { // Compute the previous element in the Fibonacci sequence const prev = arr[j] - arr[i]; // Check if prev exists and is smaller than arr[i] if (prev < arr[i] && index.has(prev)) { const k = index.get(prev); // Update DP table dp[i][j] = dp[k][i] > 0 ? dp[k][i] + 1 : 3; // Update maxLength maxLength = Math.max(maxLength, dp[i][j]); } } } return maxLength;} /** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Optimized Dynamic Programming approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseqOptimized(arr) { const n = arr.length; // Create a hash map for quick lookup const index = new Map(); for (let i = 0; i < n; i++) { index.set(arr[i], i); } // Initialize DP hash map const dp = new Map(); let maxLength = 0; for (let j = 0; j < n; j++) { for (let i = 0; i < j; i++) { // Compute the previous element in the Fibonacci sequence const prev = arr[j] - arr[i]; // Check if prev exists and is smaller than arr[i] if (prev < arr[i] && index.has(prev)) { const k = index.get(prev); // Create keys for the DP hash map const key1 = k * n + i; const key2 = i * n + j; // Update DP hash map dp.set(key2, dp.has(key1) ? dp.get(key1) + 1 : 3); // Update maxLength maxLength = Math.max(maxLength, dp.get(key2)); } } } return maxLength;} /** * Find the length of the longest subsequence that forms a Fibonacci sequence. * Brute Force approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest Fibonacci subsequence */function lenLongestFibSubseqBruteForce(arr) { const n = arr.length; // Create a hash set for quick lookup const set = new Set(arr); let maxLength = 0; for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { let a = arr[i]; let b = arr[j]; let length = 2; // Try to extend the Fibonacci sequence while (set.has(a + b)) { const next = a + b; a = b; b = next; length++; } // Update maxLength if we found a Fibonacci sequence of length at least 3 if (length >= 3) { maxLength = Math.max(maxLength, length); } } } return maxLength;} // Test casesconsole.log(lenLongestFibSubseq([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseq([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseq([1, 2, 4, 8, 16])); // 0 console.log(lenLongestFibSubseqOptimized([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseqOptimized([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseqOptimized([1, 2, 4, 8, 16])); // 0 console.log(lenLongestFibSubseqBruteForce([1, 2, 3, 4, 5, 6, 7, 8])); // 5console.log(lenLongestFibSubseqBruteForce([1, 3, 7, 11, 12, 14, 18])); // 3console.log(lenLongestFibSubseqBruteForce([1, 2, 4, 8, 16])); // 0
First, understand that we need to find the length of the longest subsequence that forms a Fibonacci sequence in a strictly increasing array.
Recognize that a Fibonacci sequence is uniquely determined by its first two elements, so we can try all possible pairs as starting points.
Create a hash map to store the indices of elements in the array for quick lookup.
Initialize a 2D DP table where dp[i][j] represents the length of the longest Fibonacci subsequence ending with arr[i] and arr[j].
For each pair of indices (i, j), compute the previous element in the Fibonacci sequence and update the DP table if the previous element exists.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the fibonacci subsequence finder problem using a different approach than shown above.
Handle the case where there is no Fibonacci subsequence of length at least 3 (return 0).
Handle the case where there are multiple Fibonacci subsequences of the same length (return the length of the longest one).
Handle the case where the array has only 3 elements (the minimum required for a Fibonacci subsequence).