Below is the implementation of the palindromic subsequence finder:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117/** * Find the length of the longest palindromic subsequence in a string. * Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseq(s) { const n = s.length; // Create a 2D DP table const dp = Array(n).fill().map(() => Array(n).fill(0)); // Base case: single characters are palindromes of length 1 for (let i = 0; i < n; i++) { dp[i][i] = 1; } // Fill the DP table diagonally for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][n - 1];} /** * Find the length of the longest palindromic subsequence in a string. * Space-Optimized Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseqOptimized(s) { const n = s.length; // Initialize previous array with 1s (base case) let previous = Array(n).fill(1); // Fill the arrays diagonally for (let len = 2; len <= n; len++) { const current = Array(n).fill(0); for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { current[i] = (i + 1 <= j - 1 ? previous[i + 1] : 0) + 2; } else { current[i] = Math.max( (i + 1 < n ? current[i + 1] : 0), previous[i] ); } } previous = current; } return previous[0];} /** * Find the length of the longest palindromic subsequence in a string. * Recursive approach with memoization. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseqRecursive(s) { const n = s.length; // Create a memoization table const memo = Array(n).fill().map(() => Array(n).fill(-1)); // Recursive function with memoization function lps(i, j) { // Base cases if (i > j) return 0; if (i === j) return 1; // Check if we've already computed this subproblem if (memo[i][j] !== -1) return memo[i][j]; // Recursive cases if (s[i] === s[j]) { memo[i][j] = lps(i + 1, j - 1) + 2; } else { memo[i][j] = Math.max(lps(i + 1, j), lps(i, j - 1)); } return memo[i][j]; } return lps(0, n - 1);} // Test casesconsole.log(longestPalindromeSubseq("bbbab")); // 4console.log(longestPalindromeSubseq("cbbd")); // 2console.log(longestPalindromeSubseq("linguistics")); // 3 console.log(longestPalindromeSubseqOptimized("bbbab")); // 4console.log(longestPalindromeSubseqOptimized("cbbd")); // 2console.log(longestPalindromeSubseqOptimized("linguistics")); // 3 console.log(longestPalindromeSubseqRecursive("bbbab")); // 4console.log(longestPalindromeSubseqRecursive("cbbd")); // 2console.log(longestPalindromeSubseqRecursive("linguistics")); // 3
Let's break down the implementation:
Implement the palindromic subsequence finder solution in different programming languages.
Below is the implementation of the palindromic subsequence finder in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117/** * Find the length of the longest palindromic subsequence in a string. * Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseq(s) { const n = s.length; // Create a 2D DP table const dp = Array(n).fill().map(() => Array(n).fill(0)); // Base case: single characters are palindromes of length 1 for (let i = 0; i < n; i++) { dp[i][i] = 1; } // Fill the DP table diagonally for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][n - 1];} /** * Find the length of the longest palindromic subsequence in a string. * Space-Optimized Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseqOptimized(s) { const n = s.length; // Initialize previous array with 1s (base case) let previous = Array(n).fill(1); // Fill the arrays diagonally for (let len = 2; len <= n; len++) { const current = Array(n).fill(0); for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { current[i] = (i + 1 <= j - 1 ? previous[i + 1] : 0) + 2; } else { current[i] = Math.max( (i + 1 < n ? current[i + 1] : 0), previous[i] ); } } previous = current; } return previous[0];} /** * Find the length of the longest palindromic subsequence in a string. * Recursive approach with memoization. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseqRecursive(s) { const n = s.length; // Create a memoization table const memo = Array(n).fill().map(() => Array(n).fill(-1)); // Recursive function with memoization function lps(i, j) { // Base cases if (i > j) return 0; if (i === j) return 1; // Check if we've already computed this subproblem if (memo[i][j] !== -1) return memo[i][j]; // Recursive cases if (s[i] === s[j]) { memo[i][j] = lps(i + 1, j - 1) + 2; } else { memo[i][j] = Math.max(lps(i + 1, j), lps(i, j - 1)); } return memo[i][j]; } return lps(0, n - 1);} // Test casesconsole.log(longestPalindromeSubseq("bbbab")); // 4console.log(longestPalindromeSubseq("cbbd")); // 2console.log(longestPalindromeSubseq("linguistics")); // 3 console.log(longestPalindromeSubseqOptimized("bbbab")); // 4console.log(longestPalindromeSubseqOptimized("cbbd")); // 2console.log(longestPalindromeSubseqOptimized("linguistics")); // 3 console.log(longestPalindromeSubseqRecursive("bbbab")); // 4console.log(longestPalindromeSubseqRecursive("cbbd")); // 2console.log(longestPalindromeSubseqRecursive("linguistics")); // 3
First, understand that we need to find the length of the longest subsequence that forms a palindrome in a given string.
Create a 2D DP table where dp[i][j] represents the length of the longest palindromic subsequence in the substring s[i...j].
Initialize the diagonal elements dp[i][i] = 1, as a single character is always a palindrome of length 1.
Fill the DP table diagonally, starting from substrings of length 2 and moving up to the full string.
For each substring, if the first and last characters are the same, include them in the palindrome; otherwise, take the maximum of excluding either the first or last character.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the palindromic subsequence finder problem using a different approach than shown above.
Handle the case where the input string has only one character (the answer is 1).
Handle the case where there is no palindromic subsequence longer than 1 (the answer is 1).
Handle the case where the entire string is a palindrome (the answer is the length of the string).
Below is the implementation of the palindromic subsequence finder:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117/** * Find the length of the longest palindromic subsequence in a string. * Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseq(s) { const n = s.length; // Create a 2D DP table const dp = Array(n).fill().map(() => Array(n).fill(0)); // Base case: single characters are palindromes of length 1 for (let i = 0; i < n; i++) { dp[i][i] = 1; } // Fill the DP table diagonally for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][n - 1];} /** * Find the length of the longest palindromic subsequence in a string. * Space-Optimized Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseqOptimized(s) { const n = s.length; // Initialize previous array with 1s (base case) let previous = Array(n).fill(1); // Fill the arrays diagonally for (let len = 2; len <= n; len++) { const current = Array(n).fill(0); for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { current[i] = (i + 1 <= j - 1 ? previous[i + 1] : 0) + 2; } else { current[i] = Math.max( (i + 1 < n ? current[i + 1] : 0), previous[i] ); } } previous = current; } return previous[0];} /** * Find the length of the longest palindromic subsequence in a string. * Recursive approach with memoization. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseqRecursive(s) { const n = s.length; // Create a memoization table const memo = Array(n).fill().map(() => Array(n).fill(-1)); // Recursive function with memoization function lps(i, j) { // Base cases if (i > j) return 0; if (i === j) return 1; // Check if we've already computed this subproblem if (memo[i][j] !== -1) return memo[i][j]; // Recursive cases if (s[i] === s[j]) { memo[i][j] = lps(i + 1, j - 1) + 2; } else { memo[i][j] = Math.max(lps(i + 1, j), lps(i, j - 1)); } return memo[i][j]; } return lps(0, n - 1);} // Test casesconsole.log(longestPalindromeSubseq("bbbab")); // 4console.log(longestPalindromeSubseq("cbbd")); // 2console.log(longestPalindromeSubseq("linguistics")); // 3 console.log(longestPalindromeSubseqOptimized("bbbab")); // 4console.log(longestPalindromeSubseqOptimized("cbbd")); // 2console.log(longestPalindromeSubseqOptimized("linguistics")); // 3 console.log(longestPalindromeSubseqRecursive("bbbab")); // 4console.log(longestPalindromeSubseqRecursive("cbbd")); // 2console.log(longestPalindromeSubseqRecursive("linguistics")); // 3
Let's break down the implementation:
Implement the palindromic subsequence finder solution in different programming languages.
Below is the implementation of the palindromic subsequence finder in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117/** * Find the length of the longest palindromic subsequence in a string. * Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseq(s) { const n = s.length; // Create a 2D DP table const dp = Array(n).fill().map(() => Array(n).fill(0)); // Base case: single characters are palindromes of length 1 for (let i = 0; i < n; i++) { dp[i][i] = 1; } // Fill the DP table diagonally for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][n - 1];} /** * Find the length of the longest palindromic subsequence in a string. * Space-Optimized Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseqOptimized(s) { const n = s.length; // Initialize previous array with 1s (base case) let previous = Array(n).fill(1); // Fill the arrays diagonally for (let len = 2; len <= n; len++) { const current = Array(n).fill(0); for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { current[i] = (i + 1 <= j - 1 ? previous[i + 1] : 0) + 2; } else { current[i] = Math.max( (i + 1 < n ? current[i + 1] : 0), previous[i] ); } } previous = current; } return previous[0];} /** * Find the length of the longest palindromic subsequence in a string. * Recursive approach with memoization. * * @param {string} s - The input string * @return {number} - The length of the longest palindromic subsequence */function longestPalindromeSubseqRecursive(s) { const n = s.length; // Create a memoization table const memo = Array(n).fill().map(() => Array(n).fill(-1)); // Recursive function with memoization function lps(i, j) { // Base cases if (i > j) return 0; if (i === j) return 1; // Check if we've already computed this subproblem if (memo[i][j] !== -1) return memo[i][j]; // Recursive cases if (s[i] === s[j]) { memo[i][j] = lps(i + 1, j - 1) + 2; } else { memo[i][j] = Math.max(lps(i + 1, j), lps(i, j - 1)); } return memo[i][j]; } return lps(0, n - 1);} // Test casesconsole.log(longestPalindromeSubseq("bbbab")); // 4console.log(longestPalindromeSubseq("cbbd")); // 2console.log(longestPalindromeSubseq("linguistics")); // 3 console.log(longestPalindromeSubseqOptimized("bbbab")); // 4console.log(longestPalindromeSubseqOptimized("cbbd")); // 2console.log(longestPalindromeSubseqOptimized("linguistics")); // 3 console.log(longestPalindromeSubseqRecursive("bbbab")); // 4console.log(longestPalindromeSubseqRecursive("cbbd")); // 2console.log(longestPalindromeSubseqRecursive("linguistics")); // 3
First, understand that we need to find the length of the longest subsequence that forms a palindrome in a given string.
Create a 2D DP table where dp[i][j] represents the length of the longest palindromic subsequence in the substring s[i...j].
Initialize the diagonal elements dp[i][i] = 1, as a single character is always a palindrome of length 1.
Fill the DP table diagonally, starting from substrings of length 2 and moving up to the full string.
For each substring, if the first and last characters are the same, include them in the palindrome; otherwise, take the maximum of excluding either the first or last character.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the palindromic subsequence finder problem using a different approach than shown above.
Handle the case where the input string has only one character (the answer is 1).
Handle the case where there is no palindromic subsequence longer than 1 (the answer is 1).
Handle the case where the entire string is a palindrome (the answer is the length of the string).