Below is the implementation of the turbulence detector:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137/** * Find the length of the longest turbulent subarray. * Dynamic Programming approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSize(arr) { const n = arr.length; if (n === 1) { return 1; } // Initialize state variables let inc = 1; // Length of turbulent subarray ending with increasing comparison let dec = 1; // Length of turbulent subarray ending with decreasing comparison let maxLength = 1; for (let i = 1; i < n; i++) { if (arr[i - 1] < arr[i]) { // Current comparison is increasing inc = dec + 1; dec = 1; } else if (arr[i - 1] > arr[i]) { // Current comparison is decreasing dec = inc + 1; inc = 1; } else { // Elements are equal, reset both inc = 1; dec = 1; } maxLength = Math.max(maxLength, Math.max(inc, dec)); } return maxLength;} /** * Find the length of the longest turbulent subarray. * Sliding Window approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSizeWindow(arr) { const n = arr.length; if (n === 1) { return 1; } let anchor = 0; let maxLength = 1; let prevComp = 0; // Previous comparison result for (let i = 1; i < n; i++) { // Calculate current comparison result let currComp = 0; if (arr[i - 1] < arr[i]) { currComp = 1; } else if (arr[i - 1] > arr[i]) { currComp = -1; } // Adjust the window if (currComp === 0) { // Elements are equal, reset the window anchor = i; } else if (i === 1 || currComp * prevComp !== -1) { // First comparison or comparison sign doesn't flip, reset the window anchor = i - 1; } maxLength = Math.max(maxLength, i - anchor + 1); prevComp = currComp; } return maxLength;} /** * Find the length of the longest turbulent subarray. * Count Consecutive Flips approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSizeFlips(arr) { const n = arr.length; if (n === 1) { return 1; } let currentLength = 1; let maxLength = 1; let prevComp = 0; // Previous comparison result for (let i = 1; i < n; i++) { // Calculate current comparison result let currComp = 0; if (arr[i - 1] < arr[i]) { currComp = 1; } else if (arr[i - 1] > arr[i]) { currComp = -1; } if (currComp === 0) { // Elements are equal, reset the counter currentLength = 1; } else if (prevComp * currComp >= 0) { // Comparison sign doesn't flip, reset the counter but count the current pair currentLength = 2; } else { // Comparison sign flips, extend the current turbulent subarray currentLength++; } maxLength = Math.max(maxLength, currentLength); prevComp = currComp; } return maxLength;} // Test casesconsole.log(maxTurbulenceSize([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSize([4, 8, 12, 16])); // 2console.log(maxTurbulenceSize([100])); // 1 console.log(maxTurbulenceSizeWindow([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSizeWindow([4, 8, 12, 16])); // 2console.log(maxTurbulenceSizeWindow([100])); // 1 console.log(maxTurbulenceSizeFlips([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSizeFlips([4, 8, 12, 16])); // 2console.log(maxTurbulenceSizeFlips([100])); // 1
Let's break down the implementation:
Implement the turbulence detector solution in different programming languages.
Below is the implementation of the turbulence detector in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137/** * Find the length of the longest turbulent subarray. * Dynamic Programming approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSize(arr) { const n = arr.length; if (n === 1) { return 1; } // Initialize state variables let inc = 1; // Length of turbulent subarray ending with increasing comparison let dec = 1; // Length of turbulent subarray ending with decreasing comparison let maxLength = 1; for (let i = 1; i < n; i++) { if (arr[i - 1] < arr[i]) { // Current comparison is increasing inc = dec + 1; dec = 1; } else if (arr[i - 1] > arr[i]) { // Current comparison is decreasing dec = inc + 1; inc = 1; } else { // Elements are equal, reset both inc = 1; dec = 1; } maxLength = Math.max(maxLength, Math.max(inc, dec)); } return maxLength;} /** * Find the length of the longest turbulent subarray. * Sliding Window approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSizeWindow(arr) { const n = arr.length; if (n === 1) { return 1; } let anchor = 0; let maxLength = 1; let prevComp = 0; // Previous comparison result for (let i = 1; i < n; i++) { // Calculate current comparison result let currComp = 0; if (arr[i - 1] < arr[i]) { currComp = 1; } else if (arr[i - 1] > arr[i]) { currComp = -1; } // Adjust the window if (currComp === 0) { // Elements are equal, reset the window anchor = i; } else if (i === 1 || currComp * prevComp !== -1) { // First comparison or comparison sign doesn't flip, reset the window anchor = i - 1; } maxLength = Math.max(maxLength, i - anchor + 1); prevComp = currComp; } return maxLength;} /** * Find the length of the longest turbulent subarray. * Count Consecutive Flips approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSizeFlips(arr) { const n = arr.length; if (n === 1) { return 1; } let currentLength = 1; let maxLength = 1; let prevComp = 0; // Previous comparison result for (let i = 1; i < n; i++) { // Calculate current comparison result let currComp = 0; if (arr[i - 1] < arr[i]) { currComp = 1; } else if (arr[i - 1] > arr[i]) { currComp = -1; } if (currComp === 0) { // Elements are equal, reset the counter currentLength = 1; } else if (prevComp * currComp >= 0) { // Comparison sign doesn't flip, reset the counter but count the current pair currentLength = 2; } else { // Comparison sign flips, extend the current turbulent subarray currentLength++; } maxLength = Math.max(maxLength, currentLength); prevComp = currComp; } return maxLength;} // Test casesconsole.log(maxTurbulenceSize([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSize([4, 8, 12, 16])); // 2console.log(maxTurbulenceSize([100])); // 1 console.log(maxTurbulenceSizeWindow([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSizeWindow([4, 8, 12, 16])); // 2console.log(maxTurbulenceSizeWindow([100])); // 1 console.log(maxTurbulenceSizeFlips([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSizeFlips([4, 8, 12, 16])); // 2console.log(maxTurbulenceSizeFlips([100])); // 1
First, understand that we need to find the length of the longest subarray where the comparison sign (< or >) alternates between adjacent elements.
Define state variables to track the length of turbulent subarrays ending with increasing and decreasing comparisons.
Iterate through the array, updating the state variables based on the comparison between adjacent elements.
Handle edge cases such as equal elements and single-element arrays.
Keep track of the maximum length of a turbulent subarray encountered during the iteration.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the turbulence detector problem using a different approach than shown above.
Handle the case where the array has only one element (return 1).
Handle the case where all elements in the array are equal (return 1).
Handle the case where the array is monotonically increasing or decreasing (return 2).
Below is the implementation of the turbulence detector:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137/** * Find the length of the longest turbulent subarray. * Dynamic Programming approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSize(arr) { const n = arr.length; if (n === 1) { return 1; } // Initialize state variables let inc = 1; // Length of turbulent subarray ending with increasing comparison let dec = 1; // Length of turbulent subarray ending with decreasing comparison let maxLength = 1; for (let i = 1; i < n; i++) { if (arr[i - 1] < arr[i]) { // Current comparison is increasing inc = dec + 1; dec = 1; } else if (arr[i - 1] > arr[i]) { // Current comparison is decreasing dec = inc + 1; inc = 1; } else { // Elements are equal, reset both inc = 1; dec = 1; } maxLength = Math.max(maxLength, Math.max(inc, dec)); } return maxLength;} /** * Find the length of the longest turbulent subarray. * Sliding Window approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSizeWindow(arr) { const n = arr.length; if (n === 1) { return 1; } let anchor = 0; let maxLength = 1; let prevComp = 0; // Previous comparison result for (let i = 1; i < n; i++) { // Calculate current comparison result let currComp = 0; if (arr[i - 1] < arr[i]) { currComp = 1; } else if (arr[i - 1] > arr[i]) { currComp = -1; } // Adjust the window if (currComp === 0) { // Elements are equal, reset the window anchor = i; } else if (i === 1 || currComp * prevComp !== -1) { // First comparison or comparison sign doesn't flip, reset the window anchor = i - 1; } maxLength = Math.max(maxLength, i - anchor + 1); prevComp = currComp; } return maxLength;} /** * Find the length of the longest turbulent subarray. * Count Consecutive Flips approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSizeFlips(arr) { const n = arr.length; if (n === 1) { return 1; } let currentLength = 1; let maxLength = 1; let prevComp = 0; // Previous comparison result for (let i = 1; i < n; i++) { // Calculate current comparison result let currComp = 0; if (arr[i - 1] < arr[i]) { currComp = 1; } else if (arr[i - 1] > arr[i]) { currComp = -1; } if (currComp === 0) { // Elements are equal, reset the counter currentLength = 1; } else if (prevComp * currComp >= 0) { // Comparison sign doesn't flip, reset the counter but count the current pair currentLength = 2; } else { // Comparison sign flips, extend the current turbulent subarray currentLength++; } maxLength = Math.max(maxLength, currentLength); prevComp = currComp; } return maxLength;} // Test casesconsole.log(maxTurbulenceSize([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSize([4, 8, 12, 16])); // 2console.log(maxTurbulenceSize([100])); // 1 console.log(maxTurbulenceSizeWindow([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSizeWindow([4, 8, 12, 16])); // 2console.log(maxTurbulenceSizeWindow([100])); // 1 console.log(maxTurbulenceSizeFlips([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSizeFlips([4, 8, 12, 16])); // 2console.log(maxTurbulenceSizeFlips([100])); // 1
Let's break down the implementation:
Implement the turbulence detector solution in different programming languages.
Below is the implementation of the turbulence detector in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137/** * Find the length of the longest turbulent subarray. * Dynamic Programming approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSize(arr) { const n = arr.length; if (n === 1) { return 1; } // Initialize state variables let inc = 1; // Length of turbulent subarray ending with increasing comparison let dec = 1; // Length of turbulent subarray ending with decreasing comparison let maxLength = 1; for (let i = 1; i < n; i++) { if (arr[i - 1] < arr[i]) { // Current comparison is increasing inc = dec + 1; dec = 1; } else if (arr[i - 1] > arr[i]) { // Current comparison is decreasing dec = inc + 1; inc = 1; } else { // Elements are equal, reset both inc = 1; dec = 1; } maxLength = Math.max(maxLength, Math.max(inc, dec)); } return maxLength;} /** * Find the length of the longest turbulent subarray. * Sliding Window approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSizeWindow(arr) { const n = arr.length; if (n === 1) { return 1; } let anchor = 0; let maxLength = 1; let prevComp = 0; // Previous comparison result for (let i = 1; i < n; i++) { // Calculate current comparison result let currComp = 0; if (arr[i - 1] < arr[i]) { currComp = 1; } else if (arr[i - 1] > arr[i]) { currComp = -1; } // Adjust the window if (currComp === 0) { // Elements are equal, reset the window anchor = i; } else if (i === 1 || currComp * prevComp !== -1) { // First comparison or comparison sign doesn't flip, reset the window anchor = i - 1; } maxLength = Math.max(maxLength, i - anchor + 1); prevComp = currComp; } return maxLength;} /** * Find the length of the longest turbulent subarray. * Count Consecutive Flips approach. * * @param {number[]} arr - The input array * @return {number} - The length of the longest turbulent subarray */function maxTurbulenceSizeFlips(arr) { const n = arr.length; if (n === 1) { return 1; } let currentLength = 1; let maxLength = 1; let prevComp = 0; // Previous comparison result for (let i = 1; i < n; i++) { // Calculate current comparison result let currComp = 0; if (arr[i - 1] < arr[i]) { currComp = 1; } else if (arr[i - 1] > arr[i]) { currComp = -1; } if (currComp === 0) { // Elements are equal, reset the counter currentLength = 1; } else if (prevComp * currComp >= 0) { // Comparison sign doesn't flip, reset the counter but count the current pair currentLength = 2; } else { // Comparison sign flips, extend the current turbulent subarray currentLength++; } maxLength = Math.max(maxLength, currentLength); prevComp = currComp; } return maxLength;} // Test casesconsole.log(maxTurbulenceSize([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSize([4, 8, 12, 16])); // 2console.log(maxTurbulenceSize([100])); // 1 console.log(maxTurbulenceSizeWindow([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSizeWindow([4, 8, 12, 16])); // 2console.log(maxTurbulenceSizeWindow([100])); // 1 console.log(maxTurbulenceSizeFlips([9, 4, 2, 10, 7, 8, 8, 1, 9])); // 5console.log(maxTurbulenceSizeFlips([4, 8, 12, 16])); // 2console.log(maxTurbulenceSizeFlips([100])); // 1
First, understand that we need to find the length of the longest subarray where the comparison sign (< or >) alternates between adjacent elements.
Define state variables to track the length of turbulent subarrays ending with increasing and decreasing comparisons.
Iterate through the array, updating the state variables based on the comparison between adjacent elements.
Handle edge cases such as equal elements and single-element arrays.
Keep track of the maximum length of a turbulent subarray encountered during the iteration.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the turbulence detector problem using a different approach than shown above.
Handle the case where the array has only one element (return 1).
Handle the case where all elements in the array are equal (return 1).
Handle the case where the array is monotonically increasing or decreasing (return 2).