Below is the implementation of the array increaser:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219/** * Make arr1 strictly increasing by replacing elements with elements from arr2. * Dynamic Programming approach. * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasing(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Initialize DP map let dp = new Map(); // Base case: first element dp.set(arr1[0], 0); for (const num of arr2) { if (num < arr1[0]) { dp.set(num, 1); } } // Process each position for (let i = 1; i < arr1.length; i++) { const newDp = new Map(); // For each possible previous value for (const [prev, count] of dp.entries()) { // Option 1: Keep the original element if (arr1[i] > prev) { newDp.set(arr1[i], Math.min(newDp.get(arr1[i]) || Infinity, count)); } // Option 2: Replace with an element from arr2 const j = binarySearch(arr2, prev); if (j < arr2.length) { newDp.set(arr2[j], Math.min(newDp.get(arr2[j]) || Infinity, count + 1)); } } // If no valid transitions, return -1 if (newDp.size === 0) { return -1; } dp = newDp; } // Find the minimum number of replacements let minReplacements = Infinity; for (const count of dp.values()) { minReplacements = Math.min(minReplacements, count); } return minReplacements === Infinity ? -1 : minReplacements;} /** * Binary search to find the smallest element in arr that is greater than target. * * @param {number[]} arr - The sorted array to search in * @param {number} target - The target value * @return {number} - The index of the smallest element greater than target, or arr.length if none exists */function binarySearch(arr, target) { let left = 0; let right = arr.length - 1; let result = arr.length; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] > target) { result = mid; right = mid - 1; } else { left = mid + 1; } } return result;} /** * Make arr1 strictly increasing by replacing elements with elements from arr2. * TreeMap approach (simulated in JavaScript). * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasingTreeMap(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Initialize DP map let dp = new Map(); // Base case: first element dp.set(arr1[0], 0); for (const num of arr2) { if (num < arr1[0]) { dp.set(num, 1); } } // Process each position for (let i = 1; i < arr1.length; i++) { const newDp = new Map(); const entries = [...dp.entries()].sort((a, b) => a[0] - b[0]); for (const [prev, count] of entries) { // Option 1: Keep the original element if (arr1[i] > prev) { newDp.set(arr1[i], Math.min(newDp.get(arr1[i]) || Infinity, count)); } // Option 2: Replace with an element from arr2 for (const num of arr2) { if (num > prev) { newDp.set(num, Math.min(newDp.get(num) || Infinity, count + 1)); break; } } } // If no valid transitions, return -1 if (newDp.size === 0) { return -1; } dp = newDp; } // Find the minimum number of replacements let minReplacements = Infinity; for (const count of dp.values()) { minReplacements = Math.min(minReplacements, count); } return minReplacements === Infinity ? -1 : minReplacements;} /** * Make arr1 strictly increasing by replacing elements with elements from arr2. * Brute Force approach with memoization. * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasingBruteForce(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Memoization cache const memo = new Map(); /** * Recursive function to find the minimum number of replacements. * * @param {number} index - The current index in arr1 * @param {number} prev - The previous value * @return {number} - The minimum number of replacements needed */ function dfs(index, prev) { // Base case: reached the end of arr1 if (index === arr1.length) { return 0; } // Check if we've already computed this state const key = `${index},${prev}`; if (memo.has(key)) { return memo.get(key); } // Option 1: Keep the original element if it's greater than the previous value let keep = Infinity; if (arr1[index] > prev) { keep = dfs(index + 1, arr1[index]); } // Option 2: Replace with an element from arr2 let replace = Infinity; const j = binarySearch(arr2, prev); if (j < arr2.length) { replace = 1 + dfs(index + 1, arr2[j]); } // Memoize and return the minimum const result = Math.min(keep, replace); memo.set(key, result); return result; } const result = dfs(0, -Infinity); return result === Infinity ? -1 : result;} // Test casesconsole.log(makeArrayIncreasing([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasing([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasing([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1 console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1 console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1
Let's break down the implementation:
Implement the array increaser solution in different programming languages.
Below is the implementation of the array increaser in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219/** * Make arr1 strictly increasing by replacing elements with elements from arr2. * Dynamic Programming approach. * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasing(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Initialize DP map let dp = new Map(); // Base case: first element dp.set(arr1[0], 0); for (const num of arr2) { if (num < arr1[0]) { dp.set(num, 1); } } // Process each position for (let i = 1; i < arr1.length; i++) { const newDp = new Map(); // For each possible previous value for (const [prev, count] of dp.entries()) { // Option 1: Keep the original element if (arr1[i] > prev) { newDp.set(arr1[i], Math.min(newDp.get(arr1[i]) || Infinity, count)); } // Option 2: Replace with an element from arr2 const j = binarySearch(arr2, prev); if (j < arr2.length) { newDp.set(arr2[j], Math.min(newDp.get(arr2[j]) || Infinity, count + 1)); } } // If no valid transitions, return -1 if (newDp.size === 0) { return -1; } dp = newDp; } // Find the minimum number of replacements let minReplacements = Infinity; for (const count of dp.values()) { minReplacements = Math.min(minReplacements, count); } return minReplacements === Infinity ? -1 : minReplacements;} /** * Binary search to find the smallest element in arr that is greater than target. * * @param {number[]} arr - The sorted array to search in * @param {number} target - The target value * @return {number} - The index of the smallest element greater than target, or arr.length if none exists */function binarySearch(arr, target) { let left = 0; let right = arr.length - 1; let result = arr.length; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] > target) { result = mid; right = mid - 1; } else { left = mid + 1; } } return result;} /** * Make arr1 strictly increasing by replacing elements with elements from arr2. * TreeMap approach (simulated in JavaScript). * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasingTreeMap(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Initialize DP map let dp = new Map(); // Base case: first element dp.set(arr1[0], 0); for (const num of arr2) { if (num < arr1[0]) { dp.set(num, 1); } } // Process each position for (let i = 1; i < arr1.length; i++) { const newDp = new Map(); const entries = [...dp.entries()].sort((a, b) => a[0] - b[0]); for (const [prev, count] of entries) { // Option 1: Keep the original element if (arr1[i] > prev) { newDp.set(arr1[i], Math.min(newDp.get(arr1[i]) || Infinity, count)); } // Option 2: Replace with an element from arr2 for (const num of arr2) { if (num > prev) { newDp.set(num, Math.min(newDp.get(num) || Infinity, count + 1)); break; } } } // If no valid transitions, return -1 if (newDp.size === 0) { return -1; } dp = newDp; } // Find the minimum number of replacements let minReplacements = Infinity; for (const count of dp.values()) { minReplacements = Math.min(minReplacements, count); } return minReplacements === Infinity ? -1 : minReplacements;} /** * Make arr1 strictly increasing by replacing elements with elements from arr2. * Brute Force approach with memoization. * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasingBruteForce(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Memoization cache const memo = new Map(); /** * Recursive function to find the minimum number of replacements. * * @param {number} index - The current index in arr1 * @param {number} prev - The previous value * @return {number} - The minimum number of replacements needed */ function dfs(index, prev) { // Base case: reached the end of arr1 if (index === arr1.length) { return 0; } // Check if we've already computed this state const key = `${index},${prev}`; if (memo.has(key)) { return memo.get(key); } // Option 1: Keep the original element if it's greater than the previous value let keep = Infinity; if (arr1[index] > prev) { keep = dfs(index + 1, arr1[index]); } // Option 2: Replace with an element from arr2 let replace = Infinity; const j = binarySearch(arr2, prev); if (j < arr2.length) { replace = 1 + dfs(index + 1, arr2[j]); } // Memoize and return the minimum const result = Math.min(keep, replace); memo.set(key, result); return result; } const result = dfs(0, -Infinity); return result === Infinity ? -1 : result;} // Test casesconsole.log(makeArrayIncreasing([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasing([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasing([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1 console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1 console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1
First, understand that we need to make arr1 strictly increasing by replacing elements with elements from arr2, and we want to minimize the number of replacements.
Sort arr2 and remove duplicates to simplify the problem and enable binary search.
Initialize a DP map where the key is the last value and the value is the minimum number of replacements needed.
For each position in arr1, consider two options: keep the original element or replace it with an element from arr2.
After processing all positions, find the minimum number of replacements needed among all possible last values.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the array increaser problem using a different approach than shown above.
Handle the case where it's impossible to make arr1 strictly increasing (return -1).
Handle the case where arr1 is already strictly increasing (return 0).
Handle the case where arr2 is empty (return -1 if arr1 is not already strictly increasing).
Below is the implementation of the array increaser:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219/** * Make arr1 strictly increasing by replacing elements with elements from arr2. * Dynamic Programming approach. * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasing(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Initialize DP map let dp = new Map(); // Base case: first element dp.set(arr1[0], 0); for (const num of arr2) { if (num < arr1[0]) { dp.set(num, 1); } } // Process each position for (let i = 1; i < arr1.length; i++) { const newDp = new Map(); // For each possible previous value for (const [prev, count] of dp.entries()) { // Option 1: Keep the original element if (arr1[i] > prev) { newDp.set(arr1[i], Math.min(newDp.get(arr1[i]) || Infinity, count)); } // Option 2: Replace with an element from arr2 const j = binarySearch(arr2, prev); if (j < arr2.length) { newDp.set(arr2[j], Math.min(newDp.get(arr2[j]) || Infinity, count + 1)); } } // If no valid transitions, return -1 if (newDp.size === 0) { return -1; } dp = newDp; } // Find the minimum number of replacements let minReplacements = Infinity; for (const count of dp.values()) { minReplacements = Math.min(minReplacements, count); } return minReplacements === Infinity ? -1 : minReplacements;} /** * Binary search to find the smallest element in arr that is greater than target. * * @param {number[]} arr - The sorted array to search in * @param {number} target - The target value * @return {number} - The index of the smallest element greater than target, or arr.length if none exists */function binarySearch(arr, target) { let left = 0; let right = arr.length - 1; let result = arr.length; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] > target) { result = mid; right = mid - 1; } else { left = mid + 1; } } return result;} /** * Make arr1 strictly increasing by replacing elements with elements from arr2. * TreeMap approach (simulated in JavaScript). * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasingTreeMap(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Initialize DP map let dp = new Map(); // Base case: first element dp.set(arr1[0], 0); for (const num of arr2) { if (num < arr1[0]) { dp.set(num, 1); } } // Process each position for (let i = 1; i < arr1.length; i++) { const newDp = new Map(); const entries = [...dp.entries()].sort((a, b) => a[0] - b[0]); for (const [prev, count] of entries) { // Option 1: Keep the original element if (arr1[i] > prev) { newDp.set(arr1[i], Math.min(newDp.get(arr1[i]) || Infinity, count)); } // Option 2: Replace with an element from arr2 for (const num of arr2) { if (num > prev) { newDp.set(num, Math.min(newDp.get(num) || Infinity, count + 1)); break; } } } // If no valid transitions, return -1 if (newDp.size === 0) { return -1; } dp = newDp; } // Find the minimum number of replacements let minReplacements = Infinity; for (const count of dp.values()) { minReplacements = Math.min(minReplacements, count); } return minReplacements === Infinity ? -1 : minReplacements;} /** * Make arr1 strictly increasing by replacing elements with elements from arr2. * Brute Force approach with memoization. * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasingBruteForce(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Memoization cache const memo = new Map(); /** * Recursive function to find the minimum number of replacements. * * @param {number} index - The current index in arr1 * @param {number} prev - The previous value * @return {number} - The minimum number of replacements needed */ function dfs(index, prev) { // Base case: reached the end of arr1 if (index === arr1.length) { return 0; } // Check if we've already computed this state const key = `${index},${prev}`; if (memo.has(key)) { return memo.get(key); } // Option 1: Keep the original element if it's greater than the previous value let keep = Infinity; if (arr1[index] > prev) { keep = dfs(index + 1, arr1[index]); } // Option 2: Replace with an element from arr2 let replace = Infinity; const j = binarySearch(arr2, prev); if (j < arr2.length) { replace = 1 + dfs(index + 1, arr2[j]); } // Memoize and return the minimum const result = Math.min(keep, replace); memo.set(key, result); return result; } const result = dfs(0, -Infinity); return result === Infinity ? -1 : result;} // Test casesconsole.log(makeArrayIncreasing([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasing([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasing([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1 console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1 console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1
Let's break down the implementation:
Implement the array increaser solution in different programming languages.
Below is the implementation of the array increaser in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219/** * Make arr1 strictly increasing by replacing elements with elements from arr2. * Dynamic Programming approach. * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasing(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Initialize DP map let dp = new Map(); // Base case: first element dp.set(arr1[0], 0); for (const num of arr2) { if (num < arr1[0]) { dp.set(num, 1); } } // Process each position for (let i = 1; i < arr1.length; i++) { const newDp = new Map(); // For each possible previous value for (const [prev, count] of dp.entries()) { // Option 1: Keep the original element if (arr1[i] > prev) { newDp.set(arr1[i], Math.min(newDp.get(arr1[i]) || Infinity, count)); } // Option 2: Replace with an element from arr2 const j = binarySearch(arr2, prev); if (j < arr2.length) { newDp.set(arr2[j], Math.min(newDp.get(arr2[j]) || Infinity, count + 1)); } } // If no valid transitions, return -1 if (newDp.size === 0) { return -1; } dp = newDp; } // Find the minimum number of replacements let minReplacements = Infinity; for (const count of dp.values()) { minReplacements = Math.min(minReplacements, count); } return minReplacements === Infinity ? -1 : minReplacements;} /** * Binary search to find the smallest element in arr that is greater than target. * * @param {number[]} arr - The sorted array to search in * @param {number} target - The target value * @return {number} - The index of the smallest element greater than target, or arr.length if none exists */function binarySearch(arr, target) { let left = 0; let right = arr.length - 1; let result = arr.length; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] > target) { result = mid; right = mid - 1; } else { left = mid + 1; } } return result;} /** * Make arr1 strictly increasing by replacing elements with elements from arr2. * TreeMap approach (simulated in JavaScript). * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasingTreeMap(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Initialize DP map let dp = new Map(); // Base case: first element dp.set(arr1[0], 0); for (const num of arr2) { if (num < arr1[0]) { dp.set(num, 1); } } // Process each position for (let i = 1; i < arr1.length; i++) { const newDp = new Map(); const entries = [...dp.entries()].sort((a, b) => a[0] - b[0]); for (const [prev, count] of entries) { // Option 1: Keep the original element if (arr1[i] > prev) { newDp.set(arr1[i], Math.min(newDp.get(arr1[i]) || Infinity, count)); } // Option 2: Replace with an element from arr2 for (const num of arr2) { if (num > prev) { newDp.set(num, Math.min(newDp.get(num) || Infinity, count + 1)); break; } } } // If no valid transitions, return -1 if (newDp.size === 0) { return -1; } dp = newDp; } // Find the minimum number of replacements let minReplacements = Infinity; for (const count of dp.values()) { minReplacements = Math.min(minReplacements, count); } return minReplacements === Infinity ? -1 : minReplacements;} /** * Make arr1 strictly increasing by replacing elements with elements from arr2. * Brute Force approach with memoization. * * @param {number[]} arr1 - The array to make strictly increasing * @param {number[]} arr2 - The array of replacement elements * @return {number} - The minimum number of replacements needed, or -1 if impossible */function makeArrayIncreasingBruteForce(arr1, arr2) { // Sort arr2 and remove duplicates arr2 = [...new Set(arr2)].sort((a, b) => a - b); // Memoization cache const memo = new Map(); /** * Recursive function to find the minimum number of replacements. * * @param {number} index - The current index in arr1 * @param {number} prev - The previous value * @return {number} - The minimum number of replacements needed */ function dfs(index, prev) { // Base case: reached the end of arr1 if (index === arr1.length) { return 0; } // Check if we've already computed this state const key = `${index},${prev}`; if (memo.has(key)) { return memo.get(key); } // Option 1: Keep the original element if it's greater than the previous value let keep = Infinity; if (arr1[index] > prev) { keep = dfs(index + 1, arr1[index]); } // Option 2: Replace with an element from arr2 let replace = Infinity; const j = binarySearch(arr2, prev); if (j < arr2.length) { replace = 1 + dfs(index + 1, arr2[j]); } // Memoize and return the minimum const result = Math.min(keep, replace); memo.set(key, result); return result; } const result = dfs(0, -Infinity); return result === Infinity ? -1 : result;} // Test casesconsole.log(makeArrayIncreasing([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasing([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasing([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1 console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasingTreeMap([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1 console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [1, 3, 2, 4])); // 1console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [4, 3, 1])); // -1console.log(makeArrayIncreasingBruteForce([1, 5, 3, 6, 7], [1, 6, 3, 3])); // -1
First, understand that we need to make arr1 strictly increasing by replacing elements with elements from arr2, and we want to minimize the number of replacements.
Sort arr2 and remove duplicates to simplify the problem and enable binary search.
Initialize a DP map where the key is the last value and the value is the minimum number of replacements needed.
For each position in arr1, consider two options: keep the original element or replace it with an element from arr2.
After processing all positions, find the minimum number of replacements needed among all possible last values.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the array increaser problem using a different approach than shown above.
Handle the case where it's impossible to make arr1 strictly increasing (return -1).
Handle the case where arr1 is already strictly increasing (return 0).
Handle the case where arr2 is empty (return -1 if arr1 is not already strictly increasing).