Below is the implementation of the palindrome maker:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125/** * Find the minimum number of insertions needed to make a string a palindrome. * Dynamic Programming with Longest Palindromic Subsequence approach. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertions(s) { const n = s.length; // Find the longest palindromic subsequence function lps(s) { const n = s.length; const dp = Array(n).fill().map(() => Array(n).fill(0)); // Base case: single characters are palindromes of length 1 for (let i = 0; i < n; i++) { dp[i][i] = 1; } // Fill the DP table for substrings of length 2 or more for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][n - 1]; } // The minimum number of insertions is the length of the string minus the length of the LPS return n - lps(s);} /** * Find the minimum number of insertions needed to make a string a palindrome. * Direct Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertionsDirect(s) { const n = s.length; const dp = Array(n).fill().map(() => Array(n).fill(0)); // Fill the DP table for substrings of length 2 or more for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1]; } else { dp[i][j] = Math.min(dp[i + 1][j], dp[i][j - 1]) + 1; } } } return dp[0][n - 1];} /** * Find the minimum number of insertions needed to make a string a palindrome. * Recursive approach with memoization. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertionsRecursive(s) { const n = s.length; const memo = new Map(); /** * Recursive function to find the minimum number of insertions. * * @param {number} i - Start index of the substring * @param {number} j - End index of the substring * @return {number} - Minimum number of insertions needed for the substring */ function dp(i, j) { // Base cases if (i >= j) { return 0; } // Check if we've already computed this subproblem const key = `${i},${j}`; if (memo.has(key)) { return memo.get(key); } // Recursive cases let result; if (s[i] === s[j]) { result = dp(i + 1, j - 1); } else { result = Math.min(dp(i + 1, j), dp(i, j - 1)) + 1; } // Memoize and return memo.set(key, result); return result; } return dp(0, n - 1);} // Test casesconsole.log(minInsertions("zzazz")); // 0console.log(minInsertions("mbadm")); // 2console.log(minInsertions("leetcode")); // 5 console.log(minInsertionsDirect("zzazz")); // 0console.log(minInsertionsDirect("mbadm")); // 2console.log(minInsertionsDirect("leetcode")); // 5 console.log(minInsertionsRecursive("zzazz")); // 0console.log(minInsertionsRecursive("mbadm")); // 2console.log(minInsertionsRecursive("leetcode")); // 5
Let's break down the implementation:
Implement the palindrome maker solution in different programming languages.
Below is the implementation of the palindrome maker in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125/** * Find the minimum number of insertions needed to make a string a palindrome. * Dynamic Programming with Longest Palindromic Subsequence approach. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertions(s) { const n = s.length; // Find the longest palindromic subsequence function lps(s) { const n = s.length; const dp = Array(n).fill().map(() => Array(n).fill(0)); // Base case: single characters are palindromes of length 1 for (let i = 0; i < n; i++) { dp[i][i] = 1; } // Fill the DP table for substrings of length 2 or more for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][n - 1]; } // The minimum number of insertions is the length of the string minus the length of the LPS return n - lps(s);} /** * Find the minimum number of insertions needed to make a string a palindrome. * Direct Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertionsDirect(s) { const n = s.length; const dp = Array(n).fill().map(() => Array(n).fill(0)); // Fill the DP table for substrings of length 2 or more for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1]; } else { dp[i][j] = Math.min(dp[i + 1][j], dp[i][j - 1]) + 1; } } } return dp[0][n - 1];} /** * Find the minimum number of insertions needed to make a string a palindrome. * Recursive approach with memoization. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertionsRecursive(s) { const n = s.length; const memo = new Map(); /** * Recursive function to find the minimum number of insertions. * * @param {number} i - Start index of the substring * @param {number} j - End index of the substring * @return {number} - Minimum number of insertions needed for the substring */ function dp(i, j) { // Base cases if (i >= j) { return 0; } // Check if we've already computed this subproblem const key = `${i},${j}`; if (memo.has(key)) { return memo.get(key); } // Recursive cases let result; if (s[i] === s[j]) { result = dp(i + 1, j - 1); } else { result = Math.min(dp(i + 1, j), dp(i, j - 1)) + 1; } // Memoize and return memo.set(key, result); return result; } return dp(0, n - 1);} // Test casesconsole.log(minInsertions("zzazz")); // 0console.log(minInsertions("mbadm")); // 2console.log(minInsertions("leetcode")); // 5 console.log(minInsertionsDirect("zzazz")); // 0console.log(minInsertionsDirect("mbadm")); // 2console.log(minInsertionsDirect("leetcode")); // 5 console.log(minInsertionsRecursive("zzazz")); // 0console.log(minInsertionsRecursive("mbadm")); // 2console.log(minInsertionsRecursive("leetcode")); // 5
First, understand that we need to find the minimum number of characters to insert into a string to make it a palindrome.
Recognize that the minimum number of insertions needed is related to the longest palindromic subsequence (LPS) of the string.
Implement a function to find the longest palindromic subsequence using dynamic programming.
Calculate the minimum number of insertions as the length of the string minus the length of the LPS.
Implement a direct dynamic programming approach or a recursive approach with memoization for better clarity or performance.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the palindrome maker problem using a different approach than shown above.
Handle the case where the input string is already a palindrome (return 0).
Handle the case where the input string has only one character (return 0).
Handle the case where all characters in the string are different (return n-1).
Below is the implementation of the palindrome maker:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125/** * Find the minimum number of insertions needed to make a string a palindrome. * Dynamic Programming with Longest Palindromic Subsequence approach. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertions(s) { const n = s.length; // Find the longest palindromic subsequence function lps(s) { const n = s.length; const dp = Array(n).fill().map(() => Array(n).fill(0)); // Base case: single characters are palindromes of length 1 for (let i = 0; i < n; i++) { dp[i][i] = 1; } // Fill the DP table for substrings of length 2 or more for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][n - 1]; } // The minimum number of insertions is the length of the string minus the length of the LPS return n - lps(s);} /** * Find the minimum number of insertions needed to make a string a palindrome. * Direct Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertionsDirect(s) { const n = s.length; const dp = Array(n).fill().map(() => Array(n).fill(0)); // Fill the DP table for substrings of length 2 or more for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1]; } else { dp[i][j] = Math.min(dp[i + 1][j], dp[i][j - 1]) + 1; } } } return dp[0][n - 1];} /** * Find the minimum number of insertions needed to make a string a palindrome. * Recursive approach with memoization. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertionsRecursive(s) { const n = s.length; const memo = new Map(); /** * Recursive function to find the minimum number of insertions. * * @param {number} i - Start index of the substring * @param {number} j - End index of the substring * @return {number} - Minimum number of insertions needed for the substring */ function dp(i, j) { // Base cases if (i >= j) { return 0; } // Check if we've already computed this subproblem const key = `${i},${j}`; if (memo.has(key)) { return memo.get(key); } // Recursive cases let result; if (s[i] === s[j]) { result = dp(i + 1, j - 1); } else { result = Math.min(dp(i + 1, j), dp(i, j - 1)) + 1; } // Memoize and return memo.set(key, result); return result; } return dp(0, n - 1);} // Test casesconsole.log(minInsertions("zzazz")); // 0console.log(minInsertions("mbadm")); // 2console.log(minInsertions("leetcode")); // 5 console.log(minInsertionsDirect("zzazz")); // 0console.log(minInsertionsDirect("mbadm")); // 2console.log(minInsertionsDirect("leetcode")); // 5 console.log(minInsertionsRecursive("zzazz")); // 0console.log(minInsertionsRecursive("mbadm")); // 2console.log(minInsertionsRecursive("leetcode")); // 5
Let's break down the implementation:
Implement the palindrome maker solution in different programming languages.
Below is the implementation of the palindrome maker in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125/** * Find the minimum number of insertions needed to make a string a palindrome. * Dynamic Programming with Longest Palindromic Subsequence approach. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertions(s) { const n = s.length; // Find the longest palindromic subsequence function lps(s) { const n = s.length; const dp = Array(n).fill().map(() => Array(n).fill(0)); // Base case: single characters are palindromes of length 1 for (let i = 0; i < n; i++) { dp[i][i] = 1; } // Fill the DP table for substrings of length 2 or more for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][n - 1]; } // The minimum number of insertions is the length of the string minus the length of the LPS return n - lps(s);} /** * Find the minimum number of insertions needed to make a string a palindrome. * Direct Dynamic Programming approach. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertionsDirect(s) { const n = s.length; const dp = Array(n).fill().map(() => Array(n).fill(0)); // Fill the DP table for substrings of length 2 or more for (let len = 2; len <= n; len++) { for (let i = 0; i <= n - len; i++) { const j = i + len - 1; if (s[i] === s[j]) { dp[i][j] = dp[i + 1][j - 1]; } else { dp[i][j] = Math.min(dp[i + 1][j], dp[i][j - 1]) + 1; } } } return dp[0][n - 1];} /** * Find the minimum number of insertions needed to make a string a palindrome. * Recursive approach with memoization. * * @param {string} s - The input string * @return {number} - The minimum number of insertions needed */function minInsertionsRecursive(s) { const n = s.length; const memo = new Map(); /** * Recursive function to find the minimum number of insertions. * * @param {number} i - Start index of the substring * @param {number} j - End index of the substring * @return {number} - Minimum number of insertions needed for the substring */ function dp(i, j) { // Base cases if (i >= j) { return 0; } // Check if we've already computed this subproblem const key = `${i},${j}`; if (memo.has(key)) { return memo.get(key); } // Recursive cases let result; if (s[i] === s[j]) { result = dp(i + 1, j - 1); } else { result = Math.min(dp(i + 1, j), dp(i, j - 1)) + 1; } // Memoize and return memo.set(key, result); return result; } return dp(0, n - 1);} // Test casesconsole.log(minInsertions("zzazz")); // 0console.log(minInsertions("mbadm")); // 2console.log(minInsertions("leetcode")); // 5 console.log(minInsertionsDirect("zzazz")); // 0console.log(minInsertionsDirect("mbadm")); // 2console.log(minInsertionsDirect("leetcode")); // 5 console.log(minInsertionsRecursive("zzazz")); // 0console.log(minInsertionsRecursive("mbadm")); // 2console.log(minInsertionsRecursive("leetcode")); // 5
First, understand that we need to find the minimum number of characters to insert into a string to make it a palindrome.
Recognize that the minimum number of insertions needed is related to the longest palindromic subsequence (LPS) of the string.
Implement a function to find the longest palindromic subsequence using dynamic programming.
Calculate the minimum number of insertions as the length of the string minus the length of the LPS.
Implement a direct dynamic programming approach or a recursive approach with memoization for better clarity or performance.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the palindrome maker problem using a different approach than shown above.
Handle the case where the input string is already a palindrome (return 0).
Handle the case where the input string has only one character (return 0).
Handle the case where all characters in the string are different (return n-1).