Below is the implementation of the number of dice rolls with target sum:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130/** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming (2D) approach. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTarget(n, k, target) { const MOD = 1000000007; // Initialize DP array // dp[i][j] = number of ways to achieve sum j using i dice const dp = Array(n + 1).fill().map(() => Array(target + 1).fill(0)); // Base case: there is one way to achieve sum 0 with 0 dice dp[0][0] = 1; // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 1; j <= target; j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { dp[i][j] = (dp[i][j] + dp[i - 1][j - face]) % MOD; } } } } return dp[n][target];} /** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming (1D) approach. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTargetOptimized(n, k, target) { const MOD = 1000000007; // Initialize arrays for previous and current dice let prev = Array(target + 1).fill(0); let curr = Array(target + 1).fill(0); // Base case: there is one way to achieve sum 0 with 0 dice prev[0] = 1; // Fill arrays for (let i = 1; i <= n; i++) { // Reset curr array curr = Array(target + 1).fill(0); for (let j = 1; j <= target; j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { curr[j] = (curr[j] + prev[j - face]) % MOD; } } } // Update prev array prev = [...curr]; } return prev[target];} /** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming with further space optimization. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTargetMoreOptimized(n, k, target) { const MOD = 1000000007; // Early return for impossible cases if (target < n || target > n * k) { return 0; } // Initialize array for DP let dp = Array(target + 1).fill(0); // Base case: there is one way to achieve sum 0 with 0 dice dp[0] = 1; // Fill DP array for (let i = 1; i <= n; i++) { // Create a new array for the current iteration const newDp = Array(target + 1).fill(0); for (let j = i; j <= Math.min(i * k, target); j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { newDp[j] = (newDp[j] + dp[j - face]) % MOD; } } } // Update dp array dp = newDp; } return dp[target];} // Test casesconsole.log(numRollsToTarget(1, 6, 3)); // 1console.log(numRollsToTarget(2, 6, 7)); // 6console.log(numRollsToTarget(30, 30, 500)); // 222616187 console.log(numRollsToTargetOptimized(1, 6, 3)); // 1console.log(numRollsToTargetOptimized(2, 6, 7)); // 6console.log(numRollsToTargetOptimized(30, 30, 500)); // 222616187 console.log(numRollsToTargetMoreOptimized(1, 6, 3)); // 1console.log(numRollsToTargetMoreOptimized(2, 6, 7)); // 6console.log(numRollsToTargetMoreOptimized(30, 30, 500)); // 222616187
Let's break down the implementation:
Implement the number of dice rolls with target sum solution in different programming languages.
Below is the implementation of the number of dice rolls with target sum in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130/** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming (2D) approach. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTarget(n, k, target) { const MOD = 1000000007; // Initialize DP array // dp[i][j] = number of ways to achieve sum j using i dice const dp = Array(n + 1).fill().map(() => Array(target + 1).fill(0)); // Base case: there is one way to achieve sum 0 with 0 dice dp[0][0] = 1; // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 1; j <= target; j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { dp[i][j] = (dp[i][j] + dp[i - 1][j - face]) % MOD; } } } } return dp[n][target];} /** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming (1D) approach. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTargetOptimized(n, k, target) { const MOD = 1000000007; // Initialize arrays for previous and current dice let prev = Array(target + 1).fill(0); let curr = Array(target + 1).fill(0); // Base case: there is one way to achieve sum 0 with 0 dice prev[0] = 1; // Fill arrays for (let i = 1; i <= n; i++) { // Reset curr array curr = Array(target + 1).fill(0); for (let j = 1; j <= target; j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { curr[j] = (curr[j] + prev[j - face]) % MOD; } } } // Update prev array prev = [...curr]; } return prev[target];} /** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming with further space optimization. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTargetMoreOptimized(n, k, target) { const MOD = 1000000007; // Early return for impossible cases if (target < n || target > n * k) { return 0; } // Initialize array for DP let dp = Array(target + 1).fill(0); // Base case: there is one way to achieve sum 0 with 0 dice dp[0] = 1; // Fill DP array for (let i = 1; i <= n; i++) { // Create a new array for the current iteration const newDp = Array(target + 1).fill(0); for (let j = i; j <= Math.min(i * k, target); j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { newDp[j] = (newDp[j] + dp[j - face]) % MOD; } } } // Update dp array dp = newDp; } return dp[target];} // Test casesconsole.log(numRollsToTarget(1, 6, 3)); // 1console.log(numRollsToTarget(2, 6, 7)); // 6console.log(numRollsToTarget(30, 30, 500)); // 222616187 console.log(numRollsToTargetOptimized(1, 6, 3)); // 1console.log(numRollsToTargetOptimized(2, 6, 7)); // 6console.log(numRollsToTargetOptimized(30, 30, 500)); // 222616187 console.log(numRollsToTargetMoreOptimized(1, 6, 3)); // 1console.log(numRollsToTargetMoreOptimized(2, 6, 7)); // 6console.log(numRollsToTargetMoreOptimized(30, 30, 500)); // 222616187
Set up a dynamic programming array to keep track of the number of ways to achieve each sum using each number of dice.
Define the base case: there is one way to achieve a sum of 0 using 0 dice (by not rolling any die).
For each number of dice and each possible sum, consider all possible values of the current die and update the DP array accordingly.
Apply the modulo operation at each step to avoid integer overflow, as the answer can be very large.
Return the number of ways to achieve the target sum using all n dice, which is stored in dp[n][target].
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the number of dice rolls with target sum problem using a different approach than shown above.
Handle cases where the target sum is impossible to achieve with the given number of dice and faces.
Handle the case where there is only one die (n = 1).
Handle large inputs efficiently to avoid stack overflow or timeout issues.
Below is the implementation of the number of dice rolls with target sum:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130/** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming (2D) approach. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTarget(n, k, target) { const MOD = 1000000007; // Initialize DP array // dp[i][j] = number of ways to achieve sum j using i dice const dp = Array(n + 1).fill().map(() => Array(target + 1).fill(0)); // Base case: there is one way to achieve sum 0 with 0 dice dp[0][0] = 1; // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 1; j <= target; j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { dp[i][j] = (dp[i][j] + dp[i - 1][j - face]) % MOD; } } } } return dp[n][target];} /** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming (1D) approach. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTargetOptimized(n, k, target) { const MOD = 1000000007; // Initialize arrays for previous and current dice let prev = Array(target + 1).fill(0); let curr = Array(target + 1).fill(0); // Base case: there is one way to achieve sum 0 with 0 dice prev[0] = 1; // Fill arrays for (let i = 1; i <= n; i++) { // Reset curr array curr = Array(target + 1).fill(0); for (let j = 1; j <= target; j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { curr[j] = (curr[j] + prev[j - face]) % MOD; } } } // Update prev array prev = [...curr]; } return prev[target];} /** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming with further space optimization. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTargetMoreOptimized(n, k, target) { const MOD = 1000000007; // Early return for impossible cases if (target < n || target > n * k) { return 0; } // Initialize array for DP let dp = Array(target + 1).fill(0); // Base case: there is one way to achieve sum 0 with 0 dice dp[0] = 1; // Fill DP array for (let i = 1; i <= n; i++) { // Create a new array for the current iteration const newDp = Array(target + 1).fill(0); for (let j = i; j <= Math.min(i * k, target); j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { newDp[j] = (newDp[j] + dp[j - face]) % MOD; } } } // Update dp array dp = newDp; } return dp[target];} // Test casesconsole.log(numRollsToTarget(1, 6, 3)); // 1console.log(numRollsToTarget(2, 6, 7)); // 6console.log(numRollsToTarget(30, 30, 500)); // 222616187 console.log(numRollsToTargetOptimized(1, 6, 3)); // 1console.log(numRollsToTargetOptimized(2, 6, 7)); // 6console.log(numRollsToTargetOptimized(30, 30, 500)); // 222616187 console.log(numRollsToTargetMoreOptimized(1, 6, 3)); // 1console.log(numRollsToTargetMoreOptimized(2, 6, 7)); // 6console.log(numRollsToTargetMoreOptimized(30, 30, 500)); // 222616187
Let's break down the implementation:
Implement the number of dice rolls with target sum solution in different programming languages.
Below is the implementation of the number of dice rolls with target sum in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130/** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming (2D) approach. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTarget(n, k, target) { const MOD = 1000000007; // Initialize DP array // dp[i][j] = number of ways to achieve sum j using i dice const dp = Array(n + 1).fill().map(() => Array(target + 1).fill(0)); // Base case: there is one way to achieve sum 0 with 0 dice dp[0][0] = 1; // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 1; j <= target; j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { dp[i][j] = (dp[i][j] + dp[i - 1][j - face]) % MOD; } } } } return dp[n][target];} /** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming (1D) approach. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTargetOptimized(n, k, target) { const MOD = 1000000007; // Initialize arrays for previous and current dice let prev = Array(target + 1).fill(0); let curr = Array(target + 1).fill(0); // Base case: there is one way to achieve sum 0 with 0 dice prev[0] = 1; // Fill arrays for (let i = 1; i <= n; i++) { // Reset curr array curr = Array(target + 1).fill(0); for (let j = 1; j <= target; j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { curr[j] = (curr[j] + prev[j - face]) % MOD; } } } // Update prev array prev = [...curr]; } return prev[target];} /** * Calculate the number of possible ways to roll the dice so the sum equals target. * Dynamic Programming with further space optimization. * * @param {number} n - Number of dice * @param {number} k - Number of faces on each die * @param {number} target - Target sum * @return {number} - Number of possible ways */function numRollsToTargetMoreOptimized(n, k, target) { const MOD = 1000000007; // Early return for impossible cases if (target < n || target > n * k) { return 0; } // Initialize array for DP let dp = Array(target + 1).fill(0); // Base case: there is one way to achieve sum 0 with 0 dice dp[0] = 1; // Fill DP array for (let i = 1; i <= n; i++) { // Create a new array for the current iteration const newDp = Array(target + 1).fill(0); for (let j = i; j <= Math.min(i * k, target); j++) { // Consider all possible values of the current die for (let face = 1; face <= k; face++) { if (j - face >= 0) { newDp[j] = (newDp[j] + dp[j - face]) % MOD; } } } // Update dp array dp = newDp; } return dp[target];} // Test casesconsole.log(numRollsToTarget(1, 6, 3)); // 1console.log(numRollsToTarget(2, 6, 7)); // 6console.log(numRollsToTarget(30, 30, 500)); // 222616187 console.log(numRollsToTargetOptimized(1, 6, 3)); // 1console.log(numRollsToTargetOptimized(2, 6, 7)); // 6console.log(numRollsToTargetOptimized(30, 30, 500)); // 222616187 console.log(numRollsToTargetMoreOptimized(1, 6, 3)); // 1console.log(numRollsToTargetMoreOptimized(2, 6, 7)); // 6console.log(numRollsToTargetMoreOptimized(30, 30, 500)); // 222616187
Set up a dynamic programming array to keep track of the number of ways to achieve each sum using each number of dice.
Define the base case: there is one way to achieve a sum of 0 using 0 dice (by not rolling any die).
For each number of dice and each possible sum, consider all possible values of the current die and update the DP array accordingly.
Apply the modulo operation at each step to avoid integer overflow, as the answer can be very large.
Return the number of ways to achieve the target sum using all n dice, which is stored in dp[n][target].
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the number of dice rolls with target sum problem using a different approach than shown above.
Handle cases where the target sum is impossible to achieve with the given number of dice and faces.
Handle the case where there is only one die (n = 1).
Handle large inputs efficiently to avoid stack overflow or timeout issues.