Below is the implementation of the partition equal subset sum:
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879/** * Determine if the array can be partitioned into two subsets with equal sum. * Dynamic Programming (2D) approach. * * @param {number[]} nums - Array of integers * @return {boolean} - True if the array can be partitioned, false otherwise */function canPartition(nums) { // Calculate the total sum of the array const totalSum = nums.reduce((sum, num) => sum + num, 0); // If the total sum is odd, return false if (totalSum % 2 !== 0) { return false; } const target = totalSum / 2; const n = nums.length; // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(target + 1).fill(false)); // Base cases dp[0][0] = true; // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 0; j <= target; j++) { // Exclude the current element dp[i][j] = dp[i - 1][j]; // Include the current element if possible if (j >= nums[i - 1]) { dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i - 1]]; } } } return dp[n][target];} /** * Determine if the array can be partitioned into two subsets with equal sum. * Dynamic Programming (1D) approach. * * @param {number[]} nums - Array of integers * @return {boolean} - True if the array can be partitioned, false otherwise */function canPartitionOptimized(nums) { // Calculate the total sum of the array const totalSum = nums.reduce((sum, num) => sum + num, 0); // If the total sum is odd, return false if (totalSum % 2 !== 0) { return false; } const target = totalSum / 2; // Initialize DP array const dp = Array(target + 1).fill(false); dp[0] = true; // Fill DP array for (const num of nums) { for (let j = target; j >= num; j--) { dp[j] = dp[j] || dp[j - num]; } } return dp[target];} // Test casesconsole.log(canPartition([1, 5, 11, 5])); // trueconsole.log(canPartition([1, 2, 3, 5])); // false console.log(canPartitionOptimized([1, 5, 11, 5])); // trueconsole.log(canPartitionOptimized([1, 2, 3, 5])); // false
Let's break down the implementation:
Implement the partition equal subset sum solution in different programming languages.
Below is the implementation of the partition equal subset sum in different programming languages. Select a language tab to view the corresponding code.
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879/** * Determine if the array can be partitioned into two subsets with equal sum. * Dynamic Programming (2D) approach. * * @param {number[]} nums - Array of integers * @return {boolean} - True if the array can be partitioned, false otherwise */function canPartition(nums) { // Calculate the total sum of the array const totalSum = nums.reduce((sum, num) => sum + num, 0); // If the total sum is odd, return false if (totalSum % 2 !== 0) { return false; } const target = totalSum / 2; const n = nums.length; // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(target + 1).fill(false)); // Base cases dp[0][0] = true; // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 0; j <= target; j++) { // Exclude the current element dp[i][j] = dp[i - 1][j]; // Include the current element if possible if (j >= nums[i - 1]) { dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i - 1]]; } } } return dp[n][target];} /** * Determine if the array can be partitioned into two subsets with equal sum. * Dynamic Programming (1D) approach. * * @param {number[]} nums - Array of integers * @return {boolean} - True if the array can be partitioned, false otherwise */function canPartitionOptimized(nums) { // Calculate the total sum of the array const totalSum = nums.reduce((sum, num) => sum + num, 0); // If the total sum is odd, return false if (totalSum % 2 !== 0) { return false; } const target = totalSum / 2; // Initialize DP array const dp = Array(target + 1).fill(false); dp[0] = true; // Fill DP array for (const num of nums) { for (let j = target; j >= num; j--) { dp[j] = dp[j] || dp[j - num]; } } return dp[target];} // Test casesconsole.log(canPartition([1, 5, 11, 5])); // trueconsole.log(canPartition([1, 2, 3, 5])); // false console.log(canPartitionOptimized([1, 5, 11, 5])); // trueconsole.log(canPartitionOptimized([1, 2, 3, 5])); // false
Calculate the total sum of the array to determine if it's possible to partition it into two equal subsets.
If the total sum is odd, it's impossible to partition the array into two equal subsets, so return false.
Set the target sum to half of the total sum, as we need to find a subset with this sum.
Initialize a DP array to keep track of which sums are possible to achieve with the given numbers.
For each number in the array, update the DP array to reflect which sums are possible to achieve.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the partition equal subset sum problem using a different approach than shown above.
Handle the case where the array is empty (return true, as both subsets would be empty with a sum of 0).
Handle the case where the array has only one element (return false, as it's impossible to partition a single element into two equal subsets).
Handle the case where all elements are zeros (return true, as both subsets would have a sum of 0).
Below is the implementation of the partition equal subset sum:
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879/** * Determine if the array can be partitioned into two subsets with equal sum. * Dynamic Programming (2D) approach. * * @param {number[]} nums - Array of integers * @return {boolean} - True if the array can be partitioned, false otherwise */function canPartition(nums) { // Calculate the total sum of the array const totalSum = nums.reduce((sum, num) => sum + num, 0); // If the total sum is odd, return false if (totalSum % 2 !== 0) { return false; } const target = totalSum / 2; const n = nums.length; // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(target + 1).fill(false)); // Base cases dp[0][0] = true; // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 0; j <= target; j++) { // Exclude the current element dp[i][j] = dp[i - 1][j]; // Include the current element if possible if (j >= nums[i - 1]) { dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i - 1]]; } } } return dp[n][target];} /** * Determine if the array can be partitioned into two subsets with equal sum. * Dynamic Programming (1D) approach. * * @param {number[]} nums - Array of integers * @return {boolean} - True if the array can be partitioned, false otherwise */function canPartitionOptimized(nums) { // Calculate the total sum of the array const totalSum = nums.reduce((sum, num) => sum + num, 0); // If the total sum is odd, return false if (totalSum % 2 !== 0) { return false; } const target = totalSum / 2; // Initialize DP array const dp = Array(target + 1).fill(false); dp[0] = true; // Fill DP array for (const num of nums) { for (let j = target; j >= num; j--) { dp[j] = dp[j] || dp[j - num]; } } return dp[target];} // Test casesconsole.log(canPartition([1, 5, 11, 5])); // trueconsole.log(canPartition([1, 2, 3, 5])); // false console.log(canPartitionOptimized([1, 5, 11, 5])); // trueconsole.log(canPartitionOptimized([1, 2, 3, 5])); // false
Let's break down the implementation:
Implement the partition equal subset sum solution in different programming languages.
Below is the implementation of the partition equal subset sum in different programming languages. Select a language tab to view the corresponding code.
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879/** * Determine if the array can be partitioned into two subsets with equal sum. * Dynamic Programming (2D) approach. * * @param {number[]} nums - Array of integers * @return {boolean} - True if the array can be partitioned, false otherwise */function canPartition(nums) { // Calculate the total sum of the array const totalSum = nums.reduce((sum, num) => sum + num, 0); // If the total sum is odd, return false if (totalSum % 2 !== 0) { return false; } const target = totalSum / 2; const n = nums.length; // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(target + 1).fill(false)); // Base cases dp[0][0] = true; // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 0; j <= target; j++) { // Exclude the current element dp[i][j] = dp[i - 1][j]; // Include the current element if possible if (j >= nums[i - 1]) { dp[i][j] = dp[i][j] || dp[i - 1][j - nums[i - 1]]; } } } return dp[n][target];} /** * Determine if the array can be partitioned into two subsets with equal sum. * Dynamic Programming (1D) approach. * * @param {number[]} nums - Array of integers * @return {boolean} - True if the array can be partitioned, false otherwise */function canPartitionOptimized(nums) { // Calculate the total sum of the array const totalSum = nums.reduce((sum, num) => sum + num, 0); // If the total sum is odd, return false if (totalSum % 2 !== 0) { return false; } const target = totalSum / 2; // Initialize DP array const dp = Array(target + 1).fill(false); dp[0] = true; // Fill DP array for (const num of nums) { for (let j = target; j >= num; j--) { dp[j] = dp[j] || dp[j - num]; } } return dp[target];} // Test casesconsole.log(canPartition([1, 5, 11, 5])); // trueconsole.log(canPartition([1, 2, 3, 5])); // false console.log(canPartitionOptimized([1, 5, 11, 5])); // trueconsole.log(canPartitionOptimized([1, 2, 3, 5])); // false
Calculate the total sum of the array to determine if it's possible to partition it into two equal subsets.
If the total sum is odd, it's impossible to partition the array into two equal subsets, so return false.
Set the target sum to half of the total sum, as we need to find a subset with this sum.
Initialize a DP array to keep track of which sums are possible to achieve with the given numbers.
For each number in the array, update the DP array to reflect which sums are possible to achieve.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the partition equal subset sum problem using a different approach than shown above.
Handle the case where the array is empty (return true, as both subsets would be empty with a sum of 0).
Handle the case where the array has only one element (return false, as it's impossible to partition a single element into two equal subsets).
Handle the case where all elements are zeros (return true, as both subsets would have a sum of 0).