Below is the implementation of the reducing dishes:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114/** * Find the maximum sum of like-time coefficients. * Greedy Approach with Sorting. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfaction(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); let total = 0; // Sum of satisfaction levels let result = 0; // Maximum sum of like-time coefficients // Iterate through the sorted array from right to left for (let i = satisfaction.length - 1; i >= 0; i--) { // Add the current satisfaction level to total total += satisfaction[i]; // Add total to result result += total; // If total becomes negative, it's better to stop including dishes if (total < 0) { result -= total; break; } } return result;} /** * Find the maximum sum of like-time coefficients. * Dynamic Programming approach. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfactionDP(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); const n = satisfaction.length; // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0)); // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 1; j <= i; j++) { // Include the dish const include = dp[i - 1][j - 1] + satisfaction[i - 1] * j; // Exclude the dish const exclude = dp[i - 1][j]; // Take the maximum dp[i][j] = Math.max(include, exclude); } } // Find the maximum value in dp[n][j] for all j from 0 to n let result = 0; for (let j = 0; j <= n; j++) { result = Math.max(result, dp[n][j]); } return result;} /** * Find the maximum sum of like-time coefficients. * Optimized Greedy Approach. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfactionOptimized(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); let total = 0; // Sum of satisfaction levels let result = 0; // Maximum sum of like-time coefficients // Iterate through the sorted array from right to left for (let i = satisfaction.length - 1; i >= 0; i--) { // Add the current satisfaction level to total total += satisfaction[i]; // If total becomes negative, it's better to stop including dishes if (total <= 0) { break; } // Add total to result result += total; } return result;} // Test casesconsole.log(maxSatisfaction([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfaction([4, 3, 2])); // 20console.log(maxSatisfaction([-1, -4, -5])); // 0 console.log(maxSatisfactionDP([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfactionDP([4, 3, 2])); // 20console.log(maxSatisfactionDP([-1, -4, -5])); // 0 console.log(maxSatisfactionOptimized([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfactionOptimized([4, 3, 2])); // 20console.log(maxSatisfactionOptimized([-1, -4, -5])); // 0
Let's break down the implementation:
Implement the reducing dishes solution in different programming languages.
Below is the implementation of the reducing dishes in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114/** * Find the maximum sum of like-time coefficients. * Greedy Approach with Sorting. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfaction(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); let total = 0; // Sum of satisfaction levels let result = 0; // Maximum sum of like-time coefficients // Iterate through the sorted array from right to left for (let i = satisfaction.length - 1; i >= 0; i--) { // Add the current satisfaction level to total total += satisfaction[i]; // Add total to result result += total; // If total becomes negative, it's better to stop including dishes if (total < 0) { result -= total; break; } } return result;} /** * Find the maximum sum of like-time coefficients. * Dynamic Programming approach. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfactionDP(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); const n = satisfaction.length; // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0)); // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 1; j <= i; j++) { // Include the dish const include = dp[i - 1][j - 1] + satisfaction[i - 1] * j; // Exclude the dish const exclude = dp[i - 1][j]; // Take the maximum dp[i][j] = Math.max(include, exclude); } } // Find the maximum value in dp[n][j] for all j from 0 to n let result = 0; for (let j = 0; j <= n; j++) { result = Math.max(result, dp[n][j]); } return result;} /** * Find the maximum sum of like-time coefficients. * Optimized Greedy Approach. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfactionOptimized(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); let total = 0; // Sum of satisfaction levels let result = 0; // Maximum sum of like-time coefficients // Iterate through the sorted array from right to left for (let i = satisfaction.length - 1; i >= 0; i--) { // Add the current satisfaction level to total total += satisfaction[i]; // If total becomes negative, it's better to stop including dishes if (total <= 0) { break; } // Add total to result result += total; } return result;} // Test casesconsole.log(maxSatisfaction([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfaction([4, 3, 2])); // 20console.log(maxSatisfaction([-1, -4, -5])); // 0 console.log(maxSatisfactionDP([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfactionDP([4, 3, 2])); // 20console.log(maxSatisfactionDP([-1, -4, -5])); // 0 console.log(maxSatisfactionOptimized([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfactionOptimized([4, 3, 2])); // 20console.log(maxSatisfactionOptimized([-1, -4, -5])); // 0
Sort the satisfaction array in ascending order to prioritize dishes with higher satisfaction levels.
Iterate through the sorted array from right to left (highest to lowest satisfaction) to greedily include dishes.
Keep track of the total sum of satisfaction levels and the maximum sum of like-time coefficients.
If the total sum becomes negative, it's better to stop including dishes, as they will decrease the overall result.
Return the maximum sum of like-time coefficients as the final result.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the reducing dishes problem using a different approach than shown above.
Handle the case where all dishes have negative satisfaction levels (return 0).
Handle the case where all dishes have positive satisfaction levels (include all dishes).
Handle the case where dishes have both positive and negative satisfaction levels (include some dishes).
Below is the implementation of the reducing dishes:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114/** * Find the maximum sum of like-time coefficients. * Greedy Approach with Sorting. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfaction(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); let total = 0; // Sum of satisfaction levels let result = 0; // Maximum sum of like-time coefficients // Iterate through the sorted array from right to left for (let i = satisfaction.length - 1; i >= 0; i--) { // Add the current satisfaction level to total total += satisfaction[i]; // Add total to result result += total; // If total becomes negative, it's better to stop including dishes if (total < 0) { result -= total; break; } } return result;} /** * Find the maximum sum of like-time coefficients. * Dynamic Programming approach. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfactionDP(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); const n = satisfaction.length; // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0)); // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 1; j <= i; j++) { // Include the dish const include = dp[i - 1][j - 1] + satisfaction[i - 1] * j; // Exclude the dish const exclude = dp[i - 1][j]; // Take the maximum dp[i][j] = Math.max(include, exclude); } } // Find the maximum value in dp[n][j] for all j from 0 to n let result = 0; for (let j = 0; j <= n; j++) { result = Math.max(result, dp[n][j]); } return result;} /** * Find the maximum sum of like-time coefficients. * Optimized Greedy Approach. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfactionOptimized(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); let total = 0; // Sum of satisfaction levels let result = 0; // Maximum sum of like-time coefficients // Iterate through the sorted array from right to left for (let i = satisfaction.length - 1; i >= 0; i--) { // Add the current satisfaction level to total total += satisfaction[i]; // If total becomes negative, it's better to stop including dishes if (total <= 0) { break; } // Add total to result result += total; } return result;} // Test casesconsole.log(maxSatisfaction([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfaction([4, 3, 2])); // 20console.log(maxSatisfaction([-1, -4, -5])); // 0 console.log(maxSatisfactionDP([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfactionDP([4, 3, 2])); // 20console.log(maxSatisfactionDP([-1, -4, -5])); // 0 console.log(maxSatisfactionOptimized([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfactionOptimized([4, 3, 2])); // 20console.log(maxSatisfactionOptimized([-1, -4, -5])); // 0
Let's break down the implementation:
Implement the reducing dishes solution in different programming languages.
Below is the implementation of the reducing dishes in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114/** * Find the maximum sum of like-time coefficients. * Greedy Approach with Sorting. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfaction(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); let total = 0; // Sum of satisfaction levels let result = 0; // Maximum sum of like-time coefficients // Iterate through the sorted array from right to left for (let i = satisfaction.length - 1; i >= 0; i--) { // Add the current satisfaction level to total total += satisfaction[i]; // Add total to result result += total; // If total becomes negative, it's better to stop including dishes if (total < 0) { result -= total; break; } } return result;} /** * Find the maximum sum of like-time coefficients. * Dynamic Programming approach. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfactionDP(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); const n = satisfaction.length; // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0)); // Fill DP array for (let i = 1; i <= n; i++) { for (let j = 1; j <= i; j++) { // Include the dish const include = dp[i - 1][j - 1] + satisfaction[i - 1] * j; // Exclude the dish const exclude = dp[i - 1][j]; // Take the maximum dp[i][j] = Math.max(include, exclude); } } // Find the maximum value in dp[n][j] for all j from 0 to n let result = 0; for (let j = 0; j <= n; j++) { result = Math.max(result, dp[n][j]); } return result;} /** * Find the maximum sum of like-time coefficients. * Optimized Greedy Approach. * * @param {number[]} satisfaction - Array of satisfaction levels * @return {number} - Maximum sum of like-time coefficients */function maxSatisfactionOptimized(satisfaction) { // Sort the satisfaction array in ascending order satisfaction.sort((a, b) => a - b); let total = 0; // Sum of satisfaction levels let result = 0; // Maximum sum of like-time coefficients // Iterate through the sorted array from right to left for (let i = satisfaction.length - 1; i >= 0; i--) { // Add the current satisfaction level to total total += satisfaction[i]; // If total becomes negative, it's better to stop including dishes if (total <= 0) { break; } // Add total to result result += total; } return result;} // Test casesconsole.log(maxSatisfaction([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfaction([4, 3, 2])); // 20console.log(maxSatisfaction([-1, -4, -5])); // 0 console.log(maxSatisfactionDP([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfactionDP([4, 3, 2])); // 20console.log(maxSatisfactionDP([-1, -4, -5])); // 0 console.log(maxSatisfactionOptimized([-1, -8, 0, 5, -9])); // 14console.log(maxSatisfactionOptimized([4, 3, 2])); // 20console.log(maxSatisfactionOptimized([-1, -4, -5])); // 0
Sort the satisfaction array in ascending order to prioritize dishes with higher satisfaction levels.
Iterate through the sorted array from right to left (highest to lowest satisfaction) to greedily include dishes.
Keep track of the total sum of satisfaction levels and the maximum sum of like-time coefficients.
If the total sum becomes negative, it's better to stop including dishes, as they will decrease the overall result.
Return the maximum sum of like-time coefficients as the final result.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the reducing dishes problem using a different approach than shown above.
Handle the case where all dishes have negative satisfaction levels (return 0).
Handle the case where all dishes have positive satisfaction levels (include all dishes).
Handle the case where dishes have both positive and negative satisfaction levels (include some dishes).