Below is the implementation of the dynamic window statistics:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273/** * Brute Force Approach * Time Complexity: O(n * k log k) - For each window, we sort k elements * Space Complexity: O(k) - We need space to store the current window * * @param {number[]} nums - The input array * @param {number} k - The size of the sliding window * @return {number[]} - The median of each sliding window */function medianSlidingWindowBruteForce(nums, k) { const result = []; for (let i = 0; i <= nums.length - k; i++) { // Extract the current window const window = nums.slice(i, i + k).sort((a, b) => a - b); // Calculate the median let median; if (k % 2 === 1) { // Odd window size median = window[Math.floor(k / 2)]; } else { // Even window size median = (window[k / 2 - 1] + window[k / 2]) / 2; } result.push(median); } return result;} /** * Two Heaps Approach * Time Complexity: O(n log k) - For each element, we perform heap operations * Space Complexity: O(k) - We need space to store the elements in the heaps * * @param {number[]} nums - The input array * @param {number} k - The size of the sliding window * @return {number[]} - The median of each sliding window */function medianSlidingWindow(nums, k) { const result = []; // Create max heap for smaller half and min heap for larger half const maxHeap = new MaxHeap(); const minHeap = new MinHeap(); // Hash map to track delayed elements (elements to be removed) const delayed = new Map(); // Process the first k-1 elements for (let i = 0; i < k - 1; i++) { addNum(nums[i]); } // Process the rest of the elements for (let i = k - 1; i < nums.length; i++) { // Add the current element addNum(nums[i]); // Calculate the median and add it to the result result.push(findMedian()); // Remove the element that's no longer in the window removeNum(nums[i - k + 1]); } return result; // Helper function to add a number to the heaps function addNum(num) { // Add to the appropriate heap if (maxHeap.size() === 0 || num <= maxHeap.peek()) { maxHeap.offer(num); } else { minHeap.offer(num); } // Rebalance the heaps rebalance(); } // Helper function to find the median function findMedian() { if (k % 2 === 1) { // Odd window size return maxHeap.peek(); } else { // Even window size return (maxHeap.peek() + minHeap.peek()) / 2; } } // Helper function to remove a number from the heaps function removeNum(num) { // Mark the number as delayed delayed.set(num, (delayed.get(num) || 0) + 1); // Update the heap sizes if (num <= maxHeap.peek()) { // The number is in the max heap if (num === maxHeap.peek()) { // Remove delayed elements from the top of the heap prune(maxHeap); } } else { // The number is in the min heap if (num === minHeap.peek()) { // Remove delayed elements from the top of the heap prune(minHeap); } } // Rebalance the heaps rebalance(); } // Helper function to remove delayed elements from the top of a heap function prune(heap) { while (heap.size() > 0 && delayed.has(heap.peek())) { const num = heap.peek(); const count = delayed.get(num); if (count === 1) { delayed.delete(num); } else { delayed.set(num, count - 1); } heap.poll(); } } // Helper function to rebalance the heaps function rebalance() { // Ensure the max heap has either the same number of elements as the min heap // or one more element (for odd window size) if (maxHeap.size() > minHeap.size() + 1) { minHeap.offer(maxHeap.poll()); prune(maxHeap); } else if (maxHeap.size() < minHeap.size()) { maxHeap.offer(minHeap.poll()); prune(minHeap); } }} // Max Heap implementationclass MaxHeap { constructor() { this.heap = []; } size() { return this.heap.length; } peek() { return this.heap[0]; } offer(val) { this.heap.push(val); this.siftUp(this.heap.length - 1); } poll() { if (this.heap.length === 0) return null; const max = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.siftDown(0); } return max; } siftUp(index) { let parent = Math.floor((index - 1) / 2); while (index > 0 && this.heap[parent] < this.heap[index]) { [this.heap[parent], this.heap[index]] = [this.heap[index], this.heap[parent]]; index = parent; parent = Math.floor((index - 1) / 2); } } siftDown(index) { const left = 2 * index + 1; const right = 2 * index + 2; let largest = index; if (left < this.heap.length && this.heap[left] > this.heap[largest]) { largest = left; } if (right < this.heap.length && this.heap[right] > this.heap[largest]) { largest = right; } if (largest !== index) { [this.heap[index], this.heap[largest]] = [this.heap[largest], this.heap[index]]; this.siftDown(largest); } }} // Min Heap implementationclass MinHeap { constructor() { this.heap = []; } size() { return this.heap.length; } peek() { return this.heap[0]; } offer(val) { this.heap.push(val); this.siftUp(this.heap.length - 1); } poll() { if (this.heap.length === 0) return null; const min = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.siftDown(0); } return min; } siftUp(index) { let parent = Math.floor((index - 1) / 2); while (index > 0 && this.heap[parent] > this.heap[index]) { [this.heap[parent], this.heap[index]] = [this.heap[index], this.heap[parent]]; index = parent; parent = Math.floor((index - 1) / 2); } } siftDown(index) { const left = 2 * index + 1; const right = 2 * index + 2; let smallest = index; if (left < this.heap.length && this.heap[left] < this.heap[smallest]) { smallest = left; } if (right < this.heap.length && this.heap[right] < this.heap[smallest]) { smallest = right; } if (smallest !== index) { [this.heap[index], this.heap[smallest]] = [this.heap[smallest], this.heap[index]]; this.siftDown(smallest); } }}
Let's break down the implementation:
Implement the dynamic window statistics solution in different programming languages.
Below is the implementation of the dynamic window statistics in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273/** * Brute Force Approach * Time Complexity: O(n * k log k) - For each window, we sort k elements * Space Complexity: O(k) - We need space to store the current window * * @param {number[]} nums - The input array * @param {number} k - The size of the sliding window * @return {number[]} - The median of each sliding window */function medianSlidingWindowBruteForce(nums, k) { const result = []; for (let i = 0; i <= nums.length - k; i++) { // Extract the current window const window = nums.slice(i, i + k).sort((a, b) => a - b); // Calculate the median let median; if (k % 2 === 1) { // Odd window size median = window[Math.floor(k / 2)]; } else { // Even window size median = (window[k / 2 - 1] + window[k / 2]) / 2; } result.push(median); } return result;} /** * Two Heaps Approach * Time Complexity: O(n log k) - For each element, we perform heap operations * Space Complexity: O(k) - We need space to store the elements in the heaps * * @param {number[]} nums - The input array * @param {number} k - The size of the sliding window * @return {number[]} - The median of each sliding window */function medianSlidingWindow(nums, k) { const result = []; // Create max heap for smaller half and min heap for larger half const maxHeap = new MaxHeap(); const minHeap = new MinHeap(); // Hash map to track delayed elements (elements to be removed) const delayed = new Map(); // Process the first k-1 elements for (let i = 0; i < k - 1; i++) { addNum(nums[i]); } // Process the rest of the elements for (let i = k - 1; i < nums.length; i++) { // Add the current element addNum(nums[i]); // Calculate the median and add it to the result result.push(findMedian()); // Remove the element that's no longer in the window removeNum(nums[i - k + 1]); } return result; // Helper function to add a number to the heaps function addNum(num) { // Add to the appropriate heap if (maxHeap.size() === 0 || num <= maxHeap.peek()) { maxHeap.offer(num); } else { minHeap.offer(num); } // Rebalance the heaps rebalance(); } // Helper function to find the median function findMedian() { if (k % 2 === 1) { // Odd window size return maxHeap.peek(); } else { // Even window size return (maxHeap.peek() + minHeap.peek()) / 2; } } // Helper function to remove a number from the heaps function removeNum(num) { // Mark the number as delayed delayed.set(num, (delayed.get(num) || 0) + 1); // Update the heap sizes if (num <= maxHeap.peek()) { // The number is in the max heap if (num === maxHeap.peek()) { // Remove delayed elements from the top of the heap prune(maxHeap); } } else { // The number is in the min heap if (num === minHeap.peek()) { // Remove delayed elements from the top of the heap prune(minHeap); } } // Rebalance the heaps rebalance(); } // Helper function to remove delayed elements from the top of a heap function prune(heap) { while (heap.size() > 0 && delayed.has(heap.peek())) { const num = heap.peek(); const count = delayed.get(num); if (count === 1) { delayed.delete(num); } else { delayed.set(num, count - 1); } heap.poll(); } } // Helper function to rebalance the heaps function rebalance() { // Ensure the max heap has either the same number of elements as the min heap // or one more element (for odd window size) if (maxHeap.size() > minHeap.size() + 1) { minHeap.offer(maxHeap.poll()); prune(maxHeap); } else if (maxHeap.size() < minHeap.size()) { maxHeap.offer(minHeap.poll()); prune(minHeap); } }} // Max Heap implementationclass MaxHeap { constructor() { this.heap = []; } size() { return this.heap.length; } peek() { return this.heap[0]; } offer(val) { this.heap.push(val); this.siftUp(this.heap.length - 1); } poll() { if (this.heap.length === 0) return null; const max = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.siftDown(0); } return max; } siftUp(index) { let parent = Math.floor((index - 1) / 2); while (index > 0 && this.heap[parent] < this.heap[index]) { [this.heap[parent], this.heap[index]] = [this.heap[index], this.heap[parent]]; index = parent; parent = Math.floor((index - 1) / 2); } } siftDown(index) { const left = 2 * index + 1; const right = 2 * index + 2; let largest = index; if (left < this.heap.length && this.heap[left] > this.heap[largest]) { largest = left; } if (right < this.heap.length && this.heap[right] > this.heap[largest]) { largest = right; } if (largest !== index) { [this.heap[index], this.heap[largest]] = [this.heap[largest], this.heap[index]]; this.siftDown(largest); } }} // Min Heap implementationclass MinHeap { constructor() { this.heap = []; } size() { return this.heap.length; } peek() { return this.heap[0]; } offer(val) { this.heap.push(val); this.siftUp(this.heap.length - 1); } poll() { if (this.heap.length === 0) return null; const min = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.siftDown(0); } return min; } siftUp(index) { let parent = Math.floor((index - 1) / 2); while (index > 0 && this.heap[parent] > this.heap[index]) { [this.heap[parent], this.heap[index]] = [this.heap[index], this.heap[parent]]; index = parent; parent = Math.floor((index - 1) / 2); } } siftDown(index) { const left = 2 * index + 1; const right = 2 * index + 2; let smallest = index; if (left < this.heap.length && this.heap[left] < this.heap[smallest]) { smallest = left; } if (right < this.heap.length && this.heap[right] < this.heap[smallest]) { smallest = right; } if (smallest !== index) { [this.heap[index], this.heap[smallest]] = [this.heap[smallest], this.heap[index]]; this.siftDown(smallest); } }}
First, understand that we need to find the median of each sliding window of size k in an array.
For each window position, extract the k elements, sort them, and calculate the median.
Use two heaps to maintain the smaller half and larger half of elements in the window, with a mechanism to handle element removal.
Use a self-balancing binary search tree to maintain the sorted order of elements in the window.
Consider edge cases such as k = 1, or when the array contains duplicate elements.
Choose the most efficient approach based on the constraints of the problem.
Verify the solution with the provided examples and additional test cases.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the dynamic window statistics problem using a different approach than shown above.
If k = 1, the median of each window is simply the element itself.
If the array size equals the window size, there's only one window and one median.
The array may contain duplicate elements, which should be treated as separate elements for median calculation.
The array may contain very large or very small numbers, which could cause overflow or precision issues in some languages.
Below is the implementation of the dynamic window statistics:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273/** * Brute Force Approach * Time Complexity: O(n * k log k) - For each window, we sort k elements * Space Complexity: O(k) - We need space to store the current window * * @param {number[]} nums - The input array * @param {number} k - The size of the sliding window * @return {number[]} - The median of each sliding window */function medianSlidingWindowBruteForce(nums, k) { const result = []; for (let i = 0; i <= nums.length - k; i++) { // Extract the current window const window = nums.slice(i, i + k).sort((a, b) => a - b); // Calculate the median let median; if (k % 2 === 1) { // Odd window size median = window[Math.floor(k / 2)]; } else { // Even window size median = (window[k / 2 - 1] + window[k / 2]) / 2; } result.push(median); } return result;} /** * Two Heaps Approach * Time Complexity: O(n log k) - For each element, we perform heap operations * Space Complexity: O(k) - We need space to store the elements in the heaps * * @param {number[]} nums - The input array * @param {number} k - The size of the sliding window * @return {number[]} - The median of each sliding window */function medianSlidingWindow(nums, k) { const result = []; // Create max heap for smaller half and min heap for larger half const maxHeap = new MaxHeap(); const minHeap = new MinHeap(); // Hash map to track delayed elements (elements to be removed) const delayed = new Map(); // Process the first k-1 elements for (let i = 0; i < k - 1; i++) { addNum(nums[i]); } // Process the rest of the elements for (let i = k - 1; i < nums.length; i++) { // Add the current element addNum(nums[i]); // Calculate the median and add it to the result result.push(findMedian()); // Remove the element that's no longer in the window removeNum(nums[i - k + 1]); } return result; // Helper function to add a number to the heaps function addNum(num) { // Add to the appropriate heap if (maxHeap.size() === 0 || num <= maxHeap.peek()) { maxHeap.offer(num); } else { minHeap.offer(num); } // Rebalance the heaps rebalance(); } // Helper function to find the median function findMedian() { if (k % 2 === 1) { // Odd window size return maxHeap.peek(); } else { // Even window size return (maxHeap.peek() + minHeap.peek()) / 2; } } // Helper function to remove a number from the heaps function removeNum(num) { // Mark the number as delayed delayed.set(num, (delayed.get(num) || 0) + 1); // Update the heap sizes if (num <= maxHeap.peek()) { // The number is in the max heap if (num === maxHeap.peek()) { // Remove delayed elements from the top of the heap prune(maxHeap); } } else { // The number is in the min heap if (num === minHeap.peek()) { // Remove delayed elements from the top of the heap prune(minHeap); } } // Rebalance the heaps rebalance(); } // Helper function to remove delayed elements from the top of a heap function prune(heap) { while (heap.size() > 0 && delayed.has(heap.peek())) { const num = heap.peek(); const count = delayed.get(num); if (count === 1) { delayed.delete(num); } else { delayed.set(num, count - 1); } heap.poll(); } } // Helper function to rebalance the heaps function rebalance() { // Ensure the max heap has either the same number of elements as the min heap // or one more element (for odd window size) if (maxHeap.size() > minHeap.size() + 1) { minHeap.offer(maxHeap.poll()); prune(maxHeap); } else if (maxHeap.size() < minHeap.size()) { maxHeap.offer(minHeap.poll()); prune(minHeap); } }} // Max Heap implementationclass MaxHeap { constructor() { this.heap = []; } size() { return this.heap.length; } peek() { return this.heap[0]; } offer(val) { this.heap.push(val); this.siftUp(this.heap.length - 1); } poll() { if (this.heap.length === 0) return null; const max = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.siftDown(0); } return max; } siftUp(index) { let parent = Math.floor((index - 1) / 2); while (index > 0 && this.heap[parent] < this.heap[index]) { [this.heap[parent], this.heap[index]] = [this.heap[index], this.heap[parent]]; index = parent; parent = Math.floor((index - 1) / 2); } } siftDown(index) { const left = 2 * index + 1; const right = 2 * index + 2; let largest = index; if (left < this.heap.length && this.heap[left] > this.heap[largest]) { largest = left; } if (right < this.heap.length && this.heap[right] > this.heap[largest]) { largest = right; } if (largest !== index) { [this.heap[index], this.heap[largest]] = [this.heap[largest], this.heap[index]]; this.siftDown(largest); } }} // Min Heap implementationclass MinHeap { constructor() { this.heap = []; } size() { return this.heap.length; } peek() { return this.heap[0]; } offer(val) { this.heap.push(val); this.siftUp(this.heap.length - 1); } poll() { if (this.heap.length === 0) return null; const min = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.siftDown(0); } return min; } siftUp(index) { let parent = Math.floor((index - 1) / 2); while (index > 0 && this.heap[parent] > this.heap[index]) { [this.heap[parent], this.heap[index]] = [this.heap[index], this.heap[parent]]; index = parent; parent = Math.floor((index - 1) / 2); } } siftDown(index) { const left = 2 * index + 1; const right = 2 * index + 2; let smallest = index; if (left < this.heap.length && this.heap[left] < this.heap[smallest]) { smallest = left; } if (right < this.heap.length && this.heap[right] < this.heap[smallest]) { smallest = right; } if (smallest !== index) { [this.heap[index], this.heap[smallest]] = [this.heap[smallest], this.heap[index]]; this.siftDown(smallest); } }}
Let's break down the implementation:
Implement the dynamic window statistics solution in different programming languages.
Below is the implementation of the dynamic window statistics in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273/** * Brute Force Approach * Time Complexity: O(n * k log k) - For each window, we sort k elements * Space Complexity: O(k) - We need space to store the current window * * @param {number[]} nums - The input array * @param {number} k - The size of the sliding window * @return {number[]} - The median of each sliding window */function medianSlidingWindowBruteForce(nums, k) { const result = []; for (let i = 0; i <= nums.length - k; i++) { // Extract the current window const window = nums.slice(i, i + k).sort((a, b) => a - b); // Calculate the median let median; if (k % 2 === 1) { // Odd window size median = window[Math.floor(k / 2)]; } else { // Even window size median = (window[k / 2 - 1] + window[k / 2]) / 2; } result.push(median); } return result;} /** * Two Heaps Approach * Time Complexity: O(n log k) - For each element, we perform heap operations * Space Complexity: O(k) - We need space to store the elements in the heaps * * @param {number[]} nums - The input array * @param {number} k - The size of the sliding window * @return {number[]} - The median of each sliding window */function medianSlidingWindow(nums, k) { const result = []; // Create max heap for smaller half and min heap for larger half const maxHeap = new MaxHeap(); const minHeap = new MinHeap(); // Hash map to track delayed elements (elements to be removed) const delayed = new Map(); // Process the first k-1 elements for (let i = 0; i < k - 1; i++) { addNum(nums[i]); } // Process the rest of the elements for (let i = k - 1; i < nums.length; i++) { // Add the current element addNum(nums[i]); // Calculate the median and add it to the result result.push(findMedian()); // Remove the element that's no longer in the window removeNum(nums[i - k + 1]); } return result; // Helper function to add a number to the heaps function addNum(num) { // Add to the appropriate heap if (maxHeap.size() === 0 || num <= maxHeap.peek()) { maxHeap.offer(num); } else { minHeap.offer(num); } // Rebalance the heaps rebalance(); } // Helper function to find the median function findMedian() { if (k % 2 === 1) { // Odd window size return maxHeap.peek(); } else { // Even window size return (maxHeap.peek() + minHeap.peek()) / 2; } } // Helper function to remove a number from the heaps function removeNum(num) { // Mark the number as delayed delayed.set(num, (delayed.get(num) || 0) + 1); // Update the heap sizes if (num <= maxHeap.peek()) { // The number is in the max heap if (num === maxHeap.peek()) { // Remove delayed elements from the top of the heap prune(maxHeap); } } else { // The number is in the min heap if (num === minHeap.peek()) { // Remove delayed elements from the top of the heap prune(minHeap); } } // Rebalance the heaps rebalance(); } // Helper function to remove delayed elements from the top of a heap function prune(heap) { while (heap.size() > 0 && delayed.has(heap.peek())) { const num = heap.peek(); const count = delayed.get(num); if (count === 1) { delayed.delete(num); } else { delayed.set(num, count - 1); } heap.poll(); } } // Helper function to rebalance the heaps function rebalance() { // Ensure the max heap has either the same number of elements as the min heap // or one more element (for odd window size) if (maxHeap.size() > minHeap.size() + 1) { minHeap.offer(maxHeap.poll()); prune(maxHeap); } else if (maxHeap.size() < minHeap.size()) { maxHeap.offer(minHeap.poll()); prune(minHeap); } }} // Max Heap implementationclass MaxHeap { constructor() { this.heap = []; } size() { return this.heap.length; } peek() { return this.heap[0]; } offer(val) { this.heap.push(val); this.siftUp(this.heap.length - 1); } poll() { if (this.heap.length === 0) return null; const max = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.siftDown(0); } return max; } siftUp(index) { let parent = Math.floor((index - 1) / 2); while (index > 0 && this.heap[parent] < this.heap[index]) { [this.heap[parent], this.heap[index]] = [this.heap[index], this.heap[parent]]; index = parent; parent = Math.floor((index - 1) / 2); } } siftDown(index) { const left = 2 * index + 1; const right = 2 * index + 2; let largest = index; if (left < this.heap.length && this.heap[left] > this.heap[largest]) { largest = left; } if (right < this.heap.length && this.heap[right] > this.heap[largest]) { largest = right; } if (largest !== index) { [this.heap[index], this.heap[largest]] = [this.heap[largest], this.heap[index]]; this.siftDown(largest); } }} // Min Heap implementationclass MinHeap { constructor() { this.heap = []; } size() { return this.heap.length; } peek() { return this.heap[0]; } offer(val) { this.heap.push(val); this.siftUp(this.heap.length - 1); } poll() { if (this.heap.length === 0) return null; const min = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.siftDown(0); } return min; } siftUp(index) { let parent = Math.floor((index - 1) / 2); while (index > 0 && this.heap[parent] > this.heap[index]) { [this.heap[parent], this.heap[index]] = [this.heap[index], this.heap[parent]]; index = parent; parent = Math.floor((index - 1) / 2); } } siftDown(index) { const left = 2 * index + 1; const right = 2 * index + 2; let smallest = index; if (left < this.heap.length && this.heap[left] < this.heap[smallest]) { smallest = left; } if (right < this.heap.length && this.heap[right] < this.heap[smallest]) { smallest = right; } if (smallest !== index) { [this.heap[index], this.heap[smallest]] = [this.heap[smallest], this.heap[index]]; this.siftDown(smallest); } }}
First, understand that we need to find the median of each sliding window of size k in an array.
For each window position, extract the k elements, sort them, and calculate the median.
Use two heaps to maintain the smaller half and larger half of elements in the window, with a mechanism to handle element removal.
Use a self-balancing binary search tree to maintain the sorted order of elements in the window.
Consider edge cases such as k = 1, or when the array contains duplicate elements.
Choose the most efficient approach based on the constraints of the problem.
Verify the solution with the provided examples and additional test cases.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the dynamic window statistics problem using a different approach than shown above.
If k = 1, the median of each window is simply the element itself.
If the array size equals the window size, there's only one window and one median.
The array may contain duplicate elements, which should be treated as separate elements for median calculation.
The array may contain very large or very small numbers, which could cause overflow or precision issues in some languages.