Below is the implementation of the hiking backpack packer:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293// Recursive Backtracking Approachfunction canPackExactly(gearWeights, capacity) { return subsetSum(gearWeights, capacity, 0);} function subsetSum(gearWeights, capacity, index) { // Base cases if (capacity === 0) { return true; } if (capacity < 0 || index >= gearWeights.length) { return false; } // Recursive cases // Exclude the current item if (subsetSum(gearWeights, capacity, index + 1)) { return true; } // Include the current item return subsetSum(gearWeights, capacity - gearWeights[index], index + 1);} // Dynamic Programming Approachfunction canPackExactlyDP(gearWeights, capacity) { const n = gearWeights.length; // Create a 2D DP table const dp = Array(n + 1).fill().map(() => Array(capacity + 1).fill(false)); // Base case: empty subset sums to 0 for (let i = 0; i <= n; i++) { dp[i][0] = true; } // Fill the DP table for (let i = 1; i <= n; i++) { for (let j = 1; j <= capacity; j++) { // If current item is too heavy, exclude it if (gearWeights[i - 1] > j) { dp[i][j] = dp[i - 1][j]; } else { // Either exclude or include the current item dp[i][j] = dp[i - 1][j] || dp[i - 1][j - gearWeights[i - 1]]; } } } return dp[n][capacity];} // Space-Optimized Dynamic Programming Approachfunction canPackExactlyOptimized(gearWeights, capacity) { // Create a 1D DP array const dp = Array(capacity + 1).fill(false); // Base case: empty subset sums to 0 dp[0] = true; // Fill the DP array for (let i = 0; i < gearWeights.length; i++) { for (let j = capacity; j >= gearWeights[i]; j--) { // Either exclude or include the current item dp[j] = dp[j] || dp[j - gearWeights[i]]; } } return dp[capacity];} // Test casesconst gearWeights1 = [2, 3, 7, 8, 10];const capacity1 = 11;console.log(`Gear weights: [${gearWeights1}], Capacity: ${capacity1}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights1, capacity1)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights1, capacity1)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights1, capacity1)}`); const gearWeights2 = [1, 3, 5];const capacity2 = 10;console.log(`\nGear weights: [${gearWeights2}], Capacity: ${capacity2}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights2, capacity2)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights2, capacity2)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights2, capacity2)}`); const gearWeights3 = [4, 2, 3, 5, 6];const capacity3 = 9;console.log(`\nGear weights: [${gearWeights3}], Capacity: ${capacity3}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights3, capacity3)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights3, capacity3)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights3, capacity3)}`);
Let's break down the implementation:
Implement the hiking backpack packer solution in different programming languages.
Below is the implementation of the hiking backpack packer in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293// Recursive Backtracking Approachfunction canPackExactly(gearWeights, capacity) { return subsetSum(gearWeights, capacity, 0);} function subsetSum(gearWeights, capacity, index) { // Base cases if (capacity === 0) { return true; } if (capacity < 0 || index >= gearWeights.length) { return false; } // Recursive cases // Exclude the current item if (subsetSum(gearWeights, capacity, index + 1)) { return true; } // Include the current item return subsetSum(gearWeights, capacity - gearWeights[index], index + 1);} // Dynamic Programming Approachfunction canPackExactlyDP(gearWeights, capacity) { const n = gearWeights.length; // Create a 2D DP table const dp = Array(n + 1).fill().map(() => Array(capacity + 1).fill(false)); // Base case: empty subset sums to 0 for (let i = 0; i <= n; i++) { dp[i][0] = true; } // Fill the DP table for (let i = 1; i <= n; i++) { for (let j = 1; j <= capacity; j++) { // If current item is too heavy, exclude it if (gearWeights[i - 1] > j) { dp[i][j] = dp[i - 1][j]; } else { // Either exclude or include the current item dp[i][j] = dp[i - 1][j] || dp[i - 1][j - gearWeights[i - 1]]; } } } return dp[n][capacity];} // Space-Optimized Dynamic Programming Approachfunction canPackExactlyOptimized(gearWeights, capacity) { // Create a 1D DP array const dp = Array(capacity + 1).fill(false); // Base case: empty subset sums to 0 dp[0] = true; // Fill the DP array for (let i = 0; i < gearWeights.length; i++) { for (let j = capacity; j >= gearWeights[i]; j--) { // Either exclude or include the current item dp[j] = dp[j] || dp[j - gearWeights[i]]; } } return dp[capacity];} // Test casesconst gearWeights1 = [2, 3, 7, 8, 10];const capacity1 = 11;console.log(`Gear weights: [${gearWeights1}], Capacity: ${capacity1}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights1, capacity1)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights1, capacity1)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights1, capacity1)}`); const gearWeights2 = [1, 3, 5];const capacity2 = 10;console.log(`\nGear weights: [${gearWeights2}], Capacity: ${capacity2}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights2, capacity2)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights2, capacity2)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights2, capacity2)}`); const gearWeights3 = [4, 2, 3, 5, 6];const capacity3 = 9;console.log(`\nGear weights: [${gearWeights3}], Capacity: ${capacity3}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights3, capacity3)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights3, capacity3)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights3, capacity3)}`);
We need to determine if there's a subset of gear weights that sum exactly to the backpack's capacity.
Recognize that this is a classic Selection Pattern problem where we recursively decide whether to include or exclude each item.
The base cases are when the remaining capacity is 0 (success), or when it's negative or we've processed all items (failure).
Write a function that handles the base cases and recursively explores both options (include/exclude) for each item.
Implement a dynamic programming solution to avoid redundant calculations and improve efficiency.
Implement a space-optimized version of the dynamic programming solution using a 1D array instead of a 2D table.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the hiking backpack packer problem using a different approach than shown above.
If the capacity is 0, the function should return true (an empty subset sums to 0).
If there's a single item that exactly matches the capacity, the function should return true.
If there's no subset that sums exactly to the capacity, the function should return false.
For large capacities, the recursive approach might be too slow, and the dynamic programming approaches should be used.
Below is the implementation of the hiking backpack packer:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293// Recursive Backtracking Approachfunction canPackExactly(gearWeights, capacity) { return subsetSum(gearWeights, capacity, 0);} function subsetSum(gearWeights, capacity, index) { // Base cases if (capacity === 0) { return true; } if (capacity < 0 || index >= gearWeights.length) { return false; } // Recursive cases // Exclude the current item if (subsetSum(gearWeights, capacity, index + 1)) { return true; } // Include the current item return subsetSum(gearWeights, capacity - gearWeights[index], index + 1);} // Dynamic Programming Approachfunction canPackExactlyDP(gearWeights, capacity) { const n = gearWeights.length; // Create a 2D DP table const dp = Array(n + 1).fill().map(() => Array(capacity + 1).fill(false)); // Base case: empty subset sums to 0 for (let i = 0; i <= n; i++) { dp[i][0] = true; } // Fill the DP table for (let i = 1; i <= n; i++) { for (let j = 1; j <= capacity; j++) { // If current item is too heavy, exclude it if (gearWeights[i - 1] > j) { dp[i][j] = dp[i - 1][j]; } else { // Either exclude or include the current item dp[i][j] = dp[i - 1][j] || dp[i - 1][j - gearWeights[i - 1]]; } } } return dp[n][capacity];} // Space-Optimized Dynamic Programming Approachfunction canPackExactlyOptimized(gearWeights, capacity) { // Create a 1D DP array const dp = Array(capacity + 1).fill(false); // Base case: empty subset sums to 0 dp[0] = true; // Fill the DP array for (let i = 0; i < gearWeights.length; i++) { for (let j = capacity; j >= gearWeights[i]; j--) { // Either exclude or include the current item dp[j] = dp[j] || dp[j - gearWeights[i]]; } } return dp[capacity];} // Test casesconst gearWeights1 = [2, 3, 7, 8, 10];const capacity1 = 11;console.log(`Gear weights: [${gearWeights1}], Capacity: ${capacity1}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights1, capacity1)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights1, capacity1)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights1, capacity1)}`); const gearWeights2 = [1, 3, 5];const capacity2 = 10;console.log(`\nGear weights: [${gearWeights2}], Capacity: ${capacity2}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights2, capacity2)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights2, capacity2)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights2, capacity2)}`); const gearWeights3 = [4, 2, 3, 5, 6];const capacity3 = 9;console.log(`\nGear weights: [${gearWeights3}], Capacity: ${capacity3}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights3, capacity3)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights3, capacity3)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights3, capacity3)}`);
Let's break down the implementation:
Implement the hiking backpack packer solution in different programming languages.
Below is the implementation of the hiking backpack packer in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293// Recursive Backtracking Approachfunction canPackExactly(gearWeights, capacity) { return subsetSum(gearWeights, capacity, 0);} function subsetSum(gearWeights, capacity, index) { // Base cases if (capacity === 0) { return true; } if (capacity < 0 || index >= gearWeights.length) { return false; } // Recursive cases // Exclude the current item if (subsetSum(gearWeights, capacity, index + 1)) { return true; } // Include the current item return subsetSum(gearWeights, capacity - gearWeights[index], index + 1);} // Dynamic Programming Approachfunction canPackExactlyDP(gearWeights, capacity) { const n = gearWeights.length; // Create a 2D DP table const dp = Array(n + 1).fill().map(() => Array(capacity + 1).fill(false)); // Base case: empty subset sums to 0 for (let i = 0; i <= n; i++) { dp[i][0] = true; } // Fill the DP table for (let i = 1; i <= n; i++) { for (let j = 1; j <= capacity; j++) { // If current item is too heavy, exclude it if (gearWeights[i - 1] > j) { dp[i][j] = dp[i - 1][j]; } else { // Either exclude or include the current item dp[i][j] = dp[i - 1][j] || dp[i - 1][j - gearWeights[i - 1]]; } } } return dp[n][capacity];} // Space-Optimized Dynamic Programming Approachfunction canPackExactlyOptimized(gearWeights, capacity) { // Create a 1D DP array const dp = Array(capacity + 1).fill(false); // Base case: empty subset sums to 0 dp[0] = true; // Fill the DP array for (let i = 0; i < gearWeights.length; i++) { for (let j = capacity; j >= gearWeights[i]; j--) { // Either exclude or include the current item dp[j] = dp[j] || dp[j - gearWeights[i]]; } } return dp[capacity];} // Test casesconst gearWeights1 = [2, 3, 7, 8, 10];const capacity1 = 11;console.log(`Gear weights: [${gearWeights1}], Capacity: ${capacity1}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights1, capacity1)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights1, capacity1)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights1, capacity1)}`); const gearWeights2 = [1, 3, 5];const capacity2 = 10;console.log(`\nGear weights: [${gearWeights2}], Capacity: ${capacity2}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights2, capacity2)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights2, capacity2)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights2, capacity2)}`); const gearWeights3 = [4, 2, 3, 5, 6];const capacity3 = 9;console.log(`\nGear weights: [${gearWeights3}], Capacity: ${capacity3}`);console.log(`Recursive Approach: ${canPackExactly(gearWeights3, capacity3)}`);console.log(`DP Approach: ${canPackExactlyDP(gearWeights3, capacity3)}`);console.log(`Optimized DP Approach: ${canPackExactlyOptimized(gearWeights3, capacity3)}`);
We need to determine if there's a subset of gear weights that sum exactly to the backpack's capacity.
Recognize that this is a classic Selection Pattern problem where we recursively decide whether to include or exclude each item.
The base cases are when the remaining capacity is 0 (success), or when it's negative or we've processed all items (failure).
Write a function that handles the base cases and recursively explores both options (include/exclude) for each item.
Implement a dynamic programming solution to avoid redundant calculations and improve efficiency.
Implement a space-optimized version of the dynamic programming solution using a 1D array instead of a 2D table.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the hiking backpack packer problem using a different approach than shown above.
If the capacity is 0, the function should return true (an empty subset sums to 0).
If there's a single item that exactly matches the capacity, the function should return true.
If there's no subset that sums exactly to the capacity, the function should return false.
For large capacities, the recursive approach might be too slow, and the dynamic programming approaches should be used.