Below is the implementation of the prime factor sequence:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141/** * Dynamic Programming with Multiple Pointers * Time Complexity: O(n * k) - We need to fill n elements in the ugly array, and for each element, we consider k prime numbers * Space Complexity: O(n + k) - We use an array of size n to store the ugly numbers and an array of size k to store the pointers * * @param {number} n - The position in the sequence to find * @param {number[]} primes - Array of prime numbers * @return {number} - The nth super ugly number */function nthSuperUglyNumberDP(n, primes) { // Initialize the ugly array with the first super ugly number const ugly = new Array(n); ugly[0] = 1; // Initialize pointers for each prime const pointers = new Array(primes.length).fill(0); // Generate the remaining super ugly numbers for (let i = 1; i < n; i++) { // Find the next super ugly number let nextUgly = Infinity; for (let j = 0; j < primes.length; j++) { const candidate = ugly[pointers[j]] * primes[j]; nextUgly = Math.min(nextUgly, candidate); } // Set the next super ugly number ugly[i] = nextUgly; // Update pointers for (let j = 0; j < primes.length; j++) { if (ugly[pointers[j]] * primes[j] === nextUgly) { pointers[j]++; } } } return ugly[n - 1];} /** * Priority Queue (Min Heap) Approach * Time Complexity: O(n * k * log(n * k)) - We perform n extractions from the priority queue, and for each extraction, we potentially add k new elements * Space Complexity: O(n * k) - The priority queue and the set can contain up to n * k elements in the worst case * * @param {number} n - The position in the sequence to find * @param {number[]} primes - Array of prime numbers * @return {number} - The nth super ugly number */function nthSuperUglyNumber(n, primes) { // Simple MinHeap implementation class MinHeap { constructor() { this.heap = []; } push(val) { this.heap.push(val); this.bubbleUp(this.heap.length - 1); } pop() { if (this.heap.length === 0) return null; const min = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.bubbleDown(0); } return min; } bubbleUp(index) { while (index > 0) { const parentIndex = Math.floor((index - 1) / 2); if (this.heap[parentIndex] <= this.heap[index]) break; [this.heap[parentIndex], this.heap[index]] = [this.heap[index], this.heap[parentIndex]]; index = parentIndex; } } bubbleDown(index) { const lastIndex = this.heap.length - 1; while (true) { const leftChildIndex = 2 * index + 1; const rightChildIndex = 2 * index + 2; let smallestIndex = index; if (leftChildIndex <= lastIndex && this.heap[leftChildIndex] < this.heap[smallestIndex]) { smallestIndex = leftChildIndex; } if (rightChildIndex <= lastIndex && this.heap[rightChildIndex] < this.heap[smallestIndex]) { smallestIndex = rightChildIndex; } if (smallestIndex === index) break; [this.heap[index], this.heap[smallestIndex]] = [this.heap[smallestIndex], this.heap[index]]; index = smallestIndex; } } size() { return this.heap.length; } } // Initialize priority queue and set const pq = new MinHeap(); const seen = new Set(); // Add the first super ugly number pq.push(1); seen.add(1); // Find the nth super ugly number let x = 0; for (let i = 0; i < n; i++) { x = pq.pop(); for (const p of primes) { const product = x * p; // Check for integer overflow and duplicates if (product <= 2147483647 && !seen.has(product)) { pq.push(product); seen.add(product); } // Optimization to avoid duplicates if (x % p === 0) { break; } } } return x;} // Test casesconsole.log(nthSuperUglyNumber(12, [2, 7, 13, 19])); // 32console.log(nthSuperUglyNumber(1, [2, 3, 5])); // 1
Let's break down the implementation:
Implement the prime factor sequence solution in different programming languages.
Below is the implementation of the prime factor sequence in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141/** * Dynamic Programming with Multiple Pointers * Time Complexity: O(n * k) - We need to fill n elements in the ugly array, and for each element, we consider k prime numbers * Space Complexity: O(n + k) - We use an array of size n to store the ugly numbers and an array of size k to store the pointers * * @param {number} n - The position in the sequence to find * @param {number[]} primes - Array of prime numbers * @return {number} - The nth super ugly number */function nthSuperUglyNumberDP(n, primes) { // Initialize the ugly array with the first super ugly number const ugly = new Array(n); ugly[0] = 1; // Initialize pointers for each prime const pointers = new Array(primes.length).fill(0); // Generate the remaining super ugly numbers for (let i = 1; i < n; i++) { // Find the next super ugly number let nextUgly = Infinity; for (let j = 0; j < primes.length; j++) { const candidate = ugly[pointers[j]] * primes[j]; nextUgly = Math.min(nextUgly, candidate); } // Set the next super ugly number ugly[i] = nextUgly; // Update pointers for (let j = 0; j < primes.length; j++) { if (ugly[pointers[j]] * primes[j] === nextUgly) { pointers[j]++; } } } return ugly[n - 1];} /** * Priority Queue (Min Heap) Approach * Time Complexity: O(n * k * log(n * k)) - We perform n extractions from the priority queue, and for each extraction, we potentially add k new elements * Space Complexity: O(n * k) - The priority queue and the set can contain up to n * k elements in the worst case * * @param {number} n - The position in the sequence to find * @param {number[]} primes - Array of prime numbers * @return {number} - The nth super ugly number */function nthSuperUglyNumber(n, primes) { // Simple MinHeap implementation class MinHeap { constructor() { this.heap = []; } push(val) { this.heap.push(val); this.bubbleUp(this.heap.length - 1); } pop() { if (this.heap.length === 0) return null; const min = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.bubbleDown(0); } return min; } bubbleUp(index) { while (index > 0) { const parentIndex = Math.floor((index - 1) / 2); if (this.heap[parentIndex] <= this.heap[index]) break; [this.heap[parentIndex], this.heap[index]] = [this.heap[index], this.heap[parentIndex]]; index = parentIndex; } } bubbleDown(index) { const lastIndex = this.heap.length - 1; while (true) { const leftChildIndex = 2 * index + 1; const rightChildIndex = 2 * index + 2; let smallestIndex = index; if (leftChildIndex <= lastIndex && this.heap[leftChildIndex] < this.heap[smallestIndex]) { smallestIndex = leftChildIndex; } if (rightChildIndex <= lastIndex && this.heap[rightChildIndex] < this.heap[smallestIndex]) { smallestIndex = rightChildIndex; } if (smallestIndex === index) break; [this.heap[index], this.heap[smallestIndex]] = [this.heap[smallestIndex], this.heap[index]]; index = smallestIndex; } } size() { return this.heap.length; } } // Initialize priority queue and set const pq = new MinHeap(); const seen = new Set(); // Add the first super ugly number pq.push(1); seen.add(1); // Find the nth super ugly number let x = 0; for (let i = 0; i < n; i++) { x = pq.pop(); for (const p of primes) { const product = x * p; // Check for integer overflow and duplicates if (product <= 2147483647 && !seen.has(product)) { pq.push(product); seen.add(product); } // Optimization to avoid duplicates if (x % p === 0) { break; } } } return x;} // Test casesconsole.log(nthSuperUglyNumber(12, [2, 7, 13, 19])); // 32console.log(nthSuperUglyNumber(1, [2, 3, 5])); // 1
First, understand that we need to find the nth super ugly number, which is a positive integer whose prime factors are limited to a specific set of prime numbers.
We can use either dynamic programming with multiple pointers or a priority queue (min heap) approach to solve this problem.
For the DP approach, initialize an array to store the ugly numbers and pointers for each prime. For the priority queue approach, initialize a min heap and a set to track seen numbers.
Generate the sequence of super ugly numbers in ascending order, using the chosen approach.
Be careful about integer overflow when multiplying numbers. Use long or BigInteger for intermediate calculations.
Implement optimizations to avoid generating duplicate numbers in the sequence.
Return the nth super ugly number from the generated sequence.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the prime factor sequence problem using a different approach than shown above.
The first super ugly number is always 1, regardless of the primes array.
Be careful about integer overflow when multiplying numbers. Use long or BigInteger for intermediate calculations.
Different combinations of primes and ugly numbers can produce the same product. We need to avoid duplicates in the sequence.
Below is the implementation of the prime factor sequence:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141/** * Dynamic Programming with Multiple Pointers * Time Complexity: O(n * k) - We need to fill n elements in the ugly array, and for each element, we consider k prime numbers * Space Complexity: O(n + k) - We use an array of size n to store the ugly numbers and an array of size k to store the pointers * * @param {number} n - The position in the sequence to find * @param {number[]} primes - Array of prime numbers * @return {number} - The nth super ugly number */function nthSuperUglyNumberDP(n, primes) { // Initialize the ugly array with the first super ugly number const ugly = new Array(n); ugly[0] = 1; // Initialize pointers for each prime const pointers = new Array(primes.length).fill(0); // Generate the remaining super ugly numbers for (let i = 1; i < n; i++) { // Find the next super ugly number let nextUgly = Infinity; for (let j = 0; j < primes.length; j++) { const candidate = ugly[pointers[j]] * primes[j]; nextUgly = Math.min(nextUgly, candidate); } // Set the next super ugly number ugly[i] = nextUgly; // Update pointers for (let j = 0; j < primes.length; j++) { if (ugly[pointers[j]] * primes[j] === nextUgly) { pointers[j]++; } } } return ugly[n - 1];} /** * Priority Queue (Min Heap) Approach * Time Complexity: O(n * k * log(n * k)) - We perform n extractions from the priority queue, and for each extraction, we potentially add k new elements * Space Complexity: O(n * k) - The priority queue and the set can contain up to n * k elements in the worst case * * @param {number} n - The position in the sequence to find * @param {number[]} primes - Array of prime numbers * @return {number} - The nth super ugly number */function nthSuperUglyNumber(n, primes) { // Simple MinHeap implementation class MinHeap { constructor() { this.heap = []; } push(val) { this.heap.push(val); this.bubbleUp(this.heap.length - 1); } pop() { if (this.heap.length === 0) return null; const min = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.bubbleDown(0); } return min; } bubbleUp(index) { while (index > 0) { const parentIndex = Math.floor((index - 1) / 2); if (this.heap[parentIndex] <= this.heap[index]) break; [this.heap[parentIndex], this.heap[index]] = [this.heap[index], this.heap[parentIndex]]; index = parentIndex; } } bubbleDown(index) { const lastIndex = this.heap.length - 1; while (true) { const leftChildIndex = 2 * index + 1; const rightChildIndex = 2 * index + 2; let smallestIndex = index; if (leftChildIndex <= lastIndex && this.heap[leftChildIndex] < this.heap[smallestIndex]) { smallestIndex = leftChildIndex; } if (rightChildIndex <= lastIndex && this.heap[rightChildIndex] < this.heap[smallestIndex]) { smallestIndex = rightChildIndex; } if (smallestIndex === index) break; [this.heap[index], this.heap[smallestIndex]] = [this.heap[smallestIndex], this.heap[index]]; index = smallestIndex; } } size() { return this.heap.length; } } // Initialize priority queue and set const pq = new MinHeap(); const seen = new Set(); // Add the first super ugly number pq.push(1); seen.add(1); // Find the nth super ugly number let x = 0; for (let i = 0; i < n; i++) { x = pq.pop(); for (const p of primes) { const product = x * p; // Check for integer overflow and duplicates if (product <= 2147483647 && !seen.has(product)) { pq.push(product); seen.add(product); } // Optimization to avoid duplicates if (x % p === 0) { break; } } } return x;} // Test casesconsole.log(nthSuperUglyNumber(12, [2, 7, 13, 19])); // 32console.log(nthSuperUglyNumber(1, [2, 3, 5])); // 1
Let's break down the implementation:
Implement the prime factor sequence solution in different programming languages.
Below is the implementation of the prime factor sequence in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141/** * Dynamic Programming with Multiple Pointers * Time Complexity: O(n * k) - We need to fill n elements in the ugly array, and for each element, we consider k prime numbers * Space Complexity: O(n + k) - We use an array of size n to store the ugly numbers and an array of size k to store the pointers * * @param {number} n - The position in the sequence to find * @param {number[]} primes - Array of prime numbers * @return {number} - The nth super ugly number */function nthSuperUglyNumberDP(n, primes) { // Initialize the ugly array with the first super ugly number const ugly = new Array(n); ugly[0] = 1; // Initialize pointers for each prime const pointers = new Array(primes.length).fill(0); // Generate the remaining super ugly numbers for (let i = 1; i < n; i++) { // Find the next super ugly number let nextUgly = Infinity; for (let j = 0; j < primes.length; j++) { const candidate = ugly[pointers[j]] * primes[j]; nextUgly = Math.min(nextUgly, candidate); } // Set the next super ugly number ugly[i] = nextUgly; // Update pointers for (let j = 0; j < primes.length; j++) { if (ugly[pointers[j]] * primes[j] === nextUgly) { pointers[j]++; } } } return ugly[n - 1];} /** * Priority Queue (Min Heap) Approach * Time Complexity: O(n * k * log(n * k)) - We perform n extractions from the priority queue, and for each extraction, we potentially add k new elements * Space Complexity: O(n * k) - The priority queue and the set can contain up to n * k elements in the worst case * * @param {number} n - The position in the sequence to find * @param {number[]} primes - Array of prime numbers * @return {number} - The nth super ugly number */function nthSuperUglyNumber(n, primes) { // Simple MinHeap implementation class MinHeap { constructor() { this.heap = []; } push(val) { this.heap.push(val); this.bubbleUp(this.heap.length - 1); } pop() { if (this.heap.length === 0) return null; const min = this.heap[0]; const last = this.heap.pop(); if (this.heap.length > 0) { this.heap[0] = last; this.bubbleDown(0); } return min; } bubbleUp(index) { while (index > 0) { const parentIndex = Math.floor((index - 1) / 2); if (this.heap[parentIndex] <= this.heap[index]) break; [this.heap[parentIndex], this.heap[index]] = [this.heap[index], this.heap[parentIndex]]; index = parentIndex; } } bubbleDown(index) { const lastIndex = this.heap.length - 1; while (true) { const leftChildIndex = 2 * index + 1; const rightChildIndex = 2 * index + 2; let smallestIndex = index; if (leftChildIndex <= lastIndex && this.heap[leftChildIndex] < this.heap[smallestIndex]) { smallestIndex = leftChildIndex; } if (rightChildIndex <= lastIndex && this.heap[rightChildIndex] < this.heap[smallestIndex]) { smallestIndex = rightChildIndex; } if (smallestIndex === index) break; [this.heap[index], this.heap[smallestIndex]] = [this.heap[smallestIndex], this.heap[index]]; index = smallestIndex; } } size() { return this.heap.length; } } // Initialize priority queue and set const pq = new MinHeap(); const seen = new Set(); // Add the first super ugly number pq.push(1); seen.add(1); // Find the nth super ugly number let x = 0; for (let i = 0; i < n; i++) { x = pq.pop(); for (const p of primes) { const product = x * p; // Check for integer overflow and duplicates if (product <= 2147483647 && !seen.has(product)) { pq.push(product); seen.add(product); } // Optimization to avoid duplicates if (x % p === 0) { break; } } } return x;} // Test casesconsole.log(nthSuperUglyNumber(12, [2, 7, 13, 19])); // 32console.log(nthSuperUglyNumber(1, [2, 3, 5])); // 1
First, understand that we need to find the nth super ugly number, which is a positive integer whose prime factors are limited to a specific set of prime numbers.
We can use either dynamic programming with multiple pointers or a priority queue (min heap) approach to solve this problem.
For the DP approach, initialize an array to store the ugly numbers and pointers for each prime. For the priority queue approach, initialize a min heap and a set to track seen numbers.
Generate the sequence of super ugly numbers in ascending order, using the chosen approach.
Be careful about integer overflow when multiplying numbers. Use long or BigInteger for intermediate calculations.
Implement optimizations to avoid generating duplicate numbers in the sequence.
Return the nth super ugly number from the generated sequence.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the prime factor sequence problem using a different approach than shown above.
The first super ugly number is always 1, regardless of the primes array.
Be careful about integer overflow when multiplying numbers. Use long or BigInteger for intermediate calculations.
Different combinations of primes and ugly numbers can produce the same product. We need to avoid duplicates in the sequence.