Below is the implementation of the combination sum iv:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131/** * Calculate the number of possible combinations that add up to target. * Dynamic Programming (Bottom-Up) approach. * * @param {number[]} nums - Array of distinct integers * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4(nums, target) { // Initialize DP array const dp = Array(target + 1).fill(0); // Base case: there is one way to form the sum 0 (by not selecting any number) dp[0] = 1; // Fill DP array for (let i = 1; i <= target; i++) { for (const num of nums) { if (i >= num) { dp[i] += dp[i - num]; } } } return dp[target];} /** * Calculate the number of possible combinations that add up to target. * Dynamic Programming (Top-Down with Memoization) approach. * * @param {number[]} nums - Array of distinct integers * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4TopDown(nums, target) { // Initialize memo array const memo = new Map(); // Define recursive function function combinationSum4Recursive(remainingTarget) { // Base case: there is one way to form the sum 0 (by not selecting any number) if (remainingTarget === 0) { return 1; } // Base case: there is no way to form a negative sum if (remainingTarget < 0) { return 0; } // If we've already computed this subproblem, return the cached result if (memo.has(remainingTarget)) { return memo.get(remainingTarget); } let count = 0; for (const num of nums) { count += combinationSum4Recursive(remainingTarget - num); } // Cache the result memo.set(remainingTarget, count); return count; } return combinationSum4Recursive(target);} /** * Calculate the number of possible combinations that add up to target. * Dynamic Programming with Handling Negative Numbers approach. * * @param {number[]} nums - Array of integers (can include negative numbers) * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4WithNegatives(nums, target) { // Initialize memo array const memo = new Map(); // Define recursive function function combinationSum4Recursive(remainingTarget, maxLength) { // Base case: there is one way to form the sum 0 (by not selecting any number) if (remainingTarget === 0) { return 1; } // Base case: there is no way to form a sum if we've used all allowed numbers // or if the remaining target is negative if (remainingTarget < 0 || maxLength === 0) { return 0; } // Create a unique key for the memo map const key = `${remainingTarget},${maxLength}`; // If we've already computed this subproblem, return the cached result if (memo.has(key)) { return memo.get(key); } let count = 0; for (const num of nums) { count += combinationSum4Recursive(remainingTarget - num, maxLength - 1); } // Cache the result memo.set(key, count); return count; } // We can't use more than target numbers if all numbers are at least 1 // If there are negative numbers, we need to set a reasonable limit const maxLength = target; return combinationSum4Recursive(target, maxLength);} // Test casesconsole.log(combinationSum4([1, 2, 3], 4)); // 7console.log(combinationSum4([9], 3)); // 0console.log(combinationSum4([1, 2, 3], 32)); // 181997601 console.log(combinationSum4TopDown([1, 2, 3], 4)); // 7console.log(combinationSum4TopDown([9], 3)); // 0console.log(combinationSum4TopDown([1, 2, 3], 32)); // 181997601 // This would cause an infinite loop without the maxLength parameter// console.log(combinationSum4WithNegatives([1, -1], 1)); // Depends on maxLengthconsole.log(combinationSum4WithNegatives([1, 2, 3], 4)); // 7
Let's break down the implementation:
Implement the combination sum iv solution in different programming languages.
Below is the implementation of the combination sum iv in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131/** * Calculate the number of possible combinations that add up to target. * Dynamic Programming (Bottom-Up) approach. * * @param {number[]} nums - Array of distinct integers * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4(nums, target) { // Initialize DP array const dp = Array(target + 1).fill(0); // Base case: there is one way to form the sum 0 (by not selecting any number) dp[0] = 1; // Fill DP array for (let i = 1; i <= target; i++) { for (const num of nums) { if (i >= num) { dp[i] += dp[i - num]; } } } return dp[target];} /** * Calculate the number of possible combinations that add up to target. * Dynamic Programming (Top-Down with Memoization) approach. * * @param {number[]} nums - Array of distinct integers * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4TopDown(nums, target) { // Initialize memo array const memo = new Map(); // Define recursive function function combinationSum4Recursive(remainingTarget) { // Base case: there is one way to form the sum 0 (by not selecting any number) if (remainingTarget === 0) { return 1; } // Base case: there is no way to form a negative sum if (remainingTarget < 0) { return 0; } // If we've already computed this subproblem, return the cached result if (memo.has(remainingTarget)) { return memo.get(remainingTarget); } let count = 0; for (const num of nums) { count += combinationSum4Recursive(remainingTarget - num); } // Cache the result memo.set(remainingTarget, count); return count; } return combinationSum4Recursive(target);} /** * Calculate the number of possible combinations that add up to target. * Dynamic Programming with Handling Negative Numbers approach. * * @param {number[]} nums - Array of integers (can include negative numbers) * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4WithNegatives(nums, target) { // Initialize memo array const memo = new Map(); // Define recursive function function combinationSum4Recursive(remainingTarget, maxLength) { // Base case: there is one way to form the sum 0 (by not selecting any number) if (remainingTarget === 0) { return 1; } // Base case: there is no way to form a sum if we've used all allowed numbers // or if the remaining target is negative if (remainingTarget < 0 || maxLength === 0) { return 0; } // Create a unique key for the memo map const key = `${remainingTarget},${maxLength}`; // If we've already computed this subproblem, return the cached result if (memo.has(key)) { return memo.get(key); } let count = 0; for (const num of nums) { count += combinationSum4Recursive(remainingTarget - num, maxLength - 1); } // Cache the result memo.set(key, count); return count; } // We can't use more than target numbers if all numbers are at least 1 // If there are negative numbers, we need to set a reasonable limit const maxLength = target; return combinationSum4Recursive(target, maxLength);} // Test casesconsole.log(combinationSum4([1, 2, 3], 4)); // 7console.log(combinationSum4([9], 3)); // 0console.log(combinationSum4([1, 2, 3], 32)); // 181997601 console.log(combinationSum4TopDown([1, 2, 3], 4)); // 7console.log(combinationSum4TopDown([9], 3)); // 0console.log(combinationSum4TopDown([1, 2, 3], 32)); // 181997601 // This would cause an infinite loop without the maxLength parameter// console.log(combinationSum4WithNegatives([1, -1], 1)); // Depends on maxLengthconsole.log(combinationSum4WithNegatives([1, 2, 3], 4)); // 7
Set up a dynamic programming array to keep track of the number of ways to form each sum from 0 to the target.
Define the base case: there is one way to form the sum 0 (by not selecting any number).
For each sum from 1 to the target, calculate the number of ways to form it by considering each number in the input array.
For each number in the input array, if it is less than or equal to the current sum, add the number of ways to form (current sum - number) to the current DP value.
Return the value in the DP array at the target index, which represents the number of ways to form the target sum.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the combination sum iv problem using a different approach than shown above.
Handle the case where the target is 0 (return 1, as there is one way to form the sum 0).
Handle the case where there are no valid combinations that add up to the target.
Handle large target values efficiently to avoid timeout issues.
Handle the case where nums can contain negative numbers (requires setting a maximum length to avoid infinite loops).
Below is the implementation of the combination sum iv:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131/** * Calculate the number of possible combinations that add up to target. * Dynamic Programming (Bottom-Up) approach. * * @param {number[]} nums - Array of distinct integers * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4(nums, target) { // Initialize DP array const dp = Array(target + 1).fill(0); // Base case: there is one way to form the sum 0 (by not selecting any number) dp[0] = 1; // Fill DP array for (let i = 1; i <= target; i++) { for (const num of nums) { if (i >= num) { dp[i] += dp[i - num]; } } } return dp[target];} /** * Calculate the number of possible combinations that add up to target. * Dynamic Programming (Top-Down with Memoization) approach. * * @param {number[]} nums - Array of distinct integers * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4TopDown(nums, target) { // Initialize memo array const memo = new Map(); // Define recursive function function combinationSum4Recursive(remainingTarget) { // Base case: there is one way to form the sum 0 (by not selecting any number) if (remainingTarget === 0) { return 1; } // Base case: there is no way to form a negative sum if (remainingTarget < 0) { return 0; } // If we've already computed this subproblem, return the cached result if (memo.has(remainingTarget)) { return memo.get(remainingTarget); } let count = 0; for (const num of nums) { count += combinationSum4Recursive(remainingTarget - num); } // Cache the result memo.set(remainingTarget, count); return count; } return combinationSum4Recursive(target);} /** * Calculate the number of possible combinations that add up to target. * Dynamic Programming with Handling Negative Numbers approach. * * @param {number[]} nums - Array of integers (can include negative numbers) * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4WithNegatives(nums, target) { // Initialize memo array const memo = new Map(); // Define recursive function function combinationSum4Recursive(remainingTarget, maxLength) { // Base case: there is one way to form the sum 0 (by not selecting any number) if (remainingTarget === 0) { return 1; } // Base case: there is no way to form a sum if we've used all allowed numbers // or if the remaining target is negative if (remainingTarget < 0 || maxLength === 0) { return 0; } // Create a unique key for the memo map const key = `${remainingTarget},${maxLength}`; // If we've already computed this subproblem, return the cached result if (memo.has(key)) { return memo.get(key); } let count = 0; for (const num of nums) { count += combinationSum4Recursive(remainingTarget - num, maxLength - 1); } // Cache the result memo.set(key, count); return count; } // We can't use more than target numbers if all numbers are at least 1 // If there are negative numbers, we need to set a reasonable limit const maxLength = target; return combinationSum4Recursive(target, maxLength);} // Test casesconsole.log(combinationSum4([1, 2, 3], 4)); // 7console.log(combinationSum4([9], 3)); // 0console.log(combinationSum4([1, 2, 3], 32)); // 181997601 console.log(combinationSum4TopDown([1, 2, 3], 4)); // 7console.log(combinationSum4TopDown([9], 3)); // 0console.log(combinationSum4TopDown([1, 2, 3], 32)); // 181997601 // This would cause an infinite loop without the maxLength parameter// console.log(combinationSum4WithNegatives([1, -1], 1)); // Depends on maxLengthconsole.log(combinationSum4WithNegatives([1, 2, 3], 4)); // 7
Let's break down the implementation:
Implement the combination sum iv solution in different programming languages.
Below is the implementation of the combination sum iv in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131/** * Calculate the number of possible combinations that add up to target. * Dynamic Programming (Bottom-Up) approach. * * @param {number[]} nums - Array of distinct integers * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4(nums, target) { // Initialize DP array const dp = Array(target + 1).fill(0); // Base case: there is one way to form the sum 0 (by not selecting any number) dp[0] = 1; // Fill DP array for (let i = 1; i <= target; i++) { for (const num of nums) { if (i >= num) { dp[i] += dp[i - num]; } } } return dp[target];} /** * Calculate the number of possible combinations that add up to target. * Dynamic Programming (Top-Down with Memoization) approach. * * @param {number[]} nums - Array of distinct integers * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4TopDown(nums, target) { // Initialize memo array const memo = new Map(); // Define recursive function function combinationSum4Recursive(remainingTarget) { // Base case: there is one way to form the sum 0 (by not selecting any number) if (remainingTarget === 0) { return 1; } // Base case: there is no way to form a negative sum if (remainingTarget < 0) { return 0; } // If we've already computed this subproblem, return the cached result if (memo.has(remainingTarget)) { return memo.get(remainingTarget); } let count = 0; for (const num of nums) { count += combinationSum4Recursive(remainingTarget - num); } // Cache the result memo.set(remainingTarget, count); return count; } return combinationSum4Recursive(target);} /** * Calculate the number of possible combinations that add up to target. * Dynamic Programming with Handling Negative Numbers approach. * * @param {number[]} nums - Array of integers (can include negative numbers) * @param {number} target - Target sum * @return {number} - Number of possible combinations */function combinationSum4WithNegatives(nums, target) { // Initialize memo array const memo = new Map(); // Define recursive function function combinationSum4Recursive(remainingTarget, maxLength) { // Base case: there is one way to form the sum 0 (by not selecting any number) if (remainingTarget === 0) { return 1; } // Base case: there is no way to form a sum if we've used all allowed numbers // or if the remaining target is negative if (remainingTarget < 0 || maxLength === 0) { return 0; } // Create a unique key for the memo map const key = `${remainingTarget},${maxLength}`; // If we've already computed this subproblem, return the cached result if (memo.has(key)) { return memo.get(key); } let count = 0; for (const num of nums) { count += combinationSum4Recursive(remainingTarget - num, maxLength - 1); } // Cache the result memo.set(key, count); return count; } // We can't use more than target numbers if all numbers are at least 1 // If there are negative numbers, we need to set a reasonable limit const maxLength = target; return combinationSum4Recursive(target, maxLength);} // Test casesconsole.log(combinationSum4([1, 2, 3], 4)); // 7console.log(combinationSum4([9], 3)); // 0console.log(combinationSum4([1, 2, 3], 32)); // 181997601 console.log(combinationSum4TopDown([1, 2, 3], 4)); // 7console.log(combinationSum4TopDown([9], 3)); // 0console.log(combinationSum4TopDown([1, 2, 3], 32)); // 181997601 // This would cause an infinite loop without the maxLength parameter// console.log(combinationSum4WithNegatives([1, -1], 1)); // Depends on maxLengthconsole.log(combinationSum4WithNegatives([1, 2, 3], 4)); // 7
Set up a dynamic programming array to keep track of the number of ways to form each sum from 0 to the target.
Define the base case: there is one way to form the sum 0 (by not selecting any number).
For each sum from 1 to the target, calculate the number of ways to form it by considering each number in the input array.
For each number in the input array, if it is less than or equal to the current sum, add the number of ways to form (current sum - number) to the current DP value.
Return the value in the DP array at the target index, which represents the number of ways to form the target sum.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the combination sum iv problem using a different approach than shown above.
Handle the case where the target is 0 (return 1, as there is one way to form the sum 0).
Handle the case where there are no valid combinations that add up to the target.
Handle large target values efficiently to avoid timeout issues.
Handle the case where nums can contain negative numbers (requires setting a maximum length to avoid infinite loops).