Below is the implementation of the dice roll simulation:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209/** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming (3D) approach. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulator(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP array // dp[i][j][k] = number of sequences of length i ending with k consecutive occurrences of face j const dp = Array(n + 1).fill().map(() => Array(FACES + 1).fill().map(() => Array(16).fill(0) ) ); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[1][j][1] = 1; } // Fill DP array for (let i = 2; i <= n; i++) { for (let j = 1; j <= FACES; j++) { // Case 1: Starting a new consecutive sequence (k = 1) // We can come from any face j' != j with any valid consecutive count k' for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { for (let k_prev = 1; k_prev <= rollMax[j_prev - 1]; k_prev++) { dp[i][j][1] = (dp[i][j][1] + dp[i - 1][j_prev][k_prev]) % MOD; } } } // Case 2: Extending a consecutive sequence (k > 1) // We can only come from the same face j with consecutive count k-1 for (let k = 2; k <= rollMax[j - 1]; k++) { dp[i][j][k] = dp[i - 1][j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { for (let k = 1; k <= rollMax[j - 1]; k++) { result = (result + dp[n][j][k]) % MOD; } } return result;} /** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming (2D) approach. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulator2D(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP arrays // dp[i][j] = number of sequences of length i ending with face j const dp = Array(n + 1).fill().map(() => Array(FACES + 1).fill(0)); // consecutive[i][j][k] = number of sequences of length i ending with k consecutive occurrences of face j const consecutive = Array(n + 1).fill().map(() => Array(FACES + 1).fill().map(() => Array(16).fill(0) ) ); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[1][j] = 1; consecutive[1][j][1] = 1; } // Fill DP arrays for (let i = 2; i <= n; i++) { for (let j = 1; j <= FACES; j++) { // Calculate dp[i][j] for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { // Add sequences ending with a different face dp[i][j] = (dp[i][j] + dp[i - 1][j_prev]) % MOD; } else { // Add sequences ending with the same face, but not exceeding rollMax for (let k = 1; k < rollMax[j - 1]; k++) { dp[i][j] = (dp[i][j] + consecutive[i - 1][j][k]) % MOD; } } } // Update consecutive array // consecutive[i][j][1] = sequences that switch to face j consecutive[i][j][1] = 0; for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { consecutive[i][j][1] = (consecutive[i][j][1] + dp[i - 1][j_prev]) % MOD; } } // consecutive[i][j][k] for k > 1 = sequences that extend consecutive occurrences of face j for (let k = 2; k <= rollMax[j - 1]; k++) { consecutive[i][j][k] = consecutive[i - 1][j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { result = (result + dp[n][j]) % MOD; } return result;} /** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming with space optimization. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulatorOptimized(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP arrays for current and previous rolls let dp = Array(FACES + 1).fill(0); let consecutive = Array(FACES + 1).fill().map(() => Array(16).fill(0)); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[j] = 1; consecutive[j][1] = 1; } // Fill DP arrays for (let i = 2; i <= n; i++) { // Save the previous DP arrays const prevDp = [...dp]; const prevConsecutive = consecutive.map(row => [...row]); // Reset current DP arrays dp = Array(FACES + 1).fill(0); consecutive = Array(FACES + 1).fill().map(() => Array(16).fill(0)); for (let j = 1; j <= FACES; j++) { // Calculate dp[j] for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { // Add sequences ending with a different face dp[j] = (dp[j] + prevDp[j_prev]) % MOD; } else { // Add sequences ending with the same face, but not exceeding rollMax for (let k = 1; k < rollMax[j - 1]; k++) { dp[j] = (dp[j] + prevConsecutive[j][k]) % MOD; } } } // Update consecutive array // consecutive[j][1] = sequences that switch to face j for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { consecutive[j][1] = (consecutive[j][1] + prevDp[j_prev]) % MOD; } } // consecutive[j][k] for k > 1 = sequences that extend consecutive occurrences of face j for (let k = 2; k <= rollMax[j - 1]; k++) { consecutive[j][k] = prevConsecutive[j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { result = (result + dp[j]) % MOD; } return result;} // Test casesconsole.log(dieSimulator(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulator(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulator(3, [1, 1, 1, 2, 2, 3])); // 181 console.log(dieSimulator2D(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulator2D(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulator2D(3, [1, 1, 1, 2, 2, 3])); // 181 console.log(dieSimulatorOptimized(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulatorOptimized(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulatorOptimized(3, [1, 1, 1, 2, 2, 3])); // 181
Let's break down the implementation:
Implement the dice roll simulation solution in different programming languages.
Below is the implementation of the dice roll simulation in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209/** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming (3D) approach. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulator(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP array // dp[i][j][k] = number of sequences of length i ending with k consecutive occurrences of face j const dp = Array(n + 1).fill().map(() => Array(FACES + 1).fill().map(() => Array(16).fill(0) ) ); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[1][j][1] = 1; } // Fill DP array for (let i = 2; i <= n; i++) { for (let j = 1; j <= FACES; j++) { // Case 1: Starting a new consecutive sequence (k = 1) // We can come from any face j' != j with any valid consecutive count k' for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { for (let k_prev = 1; k_prev <= rollMax[j_prev - 1]; k_prev++) { dp[i][j][1] = (dp[i][j][1] + dp[i - 1][j_prev][k_prev]) % MOD; } } } // Case 2: Extending a consecutive sequence (k > 1) // We can only come from the same face j with consecutive count k-1 for (let k = 2; k <= rollMax[j - 1]; k++) { dp[i][j][k] = dp[i - 1][j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { for (let k = 1; k <= rollMax[j - 1]; k++) { result = (result + dp[n][j][k]) % MOD; } } return result;} /** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming (2D) approach. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulator2D(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP arrays // dp[i][j] = number of sequences of length i ending with face j const dp = Array(n + 1).fill().map(() => Array(FACES + 1).fill(0)); // consecutive[i][j][k] = number of sequences of length i ending with k consecutive occurrences of face j const consecutive = Array(n + 1).fill().map(() => Array(FACES + 1).fill().map(() => Array(16).fill(0) ) ); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[1][j] = 1; consecutive[1][j][1] = 1; } // Fill DP arrays for (let i = 2; i <= n; i++) { for (let j = 1; j <= FACES; j++) { // Calculate dp[i][j] for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { // Add sequences ending with a different face dp[i][j] = (dp[i][j] + dp[i - 1][j_prev]) % MOD; } else { // Add sequences ending with the same face, but not exceeding rollMax for (let k = 1; k < rollMax[j - 1]; k++) { dp[i][j] = (dp[i][j] + consecutive[i - 1][j][k]) % MOD; } } } // Update consecutive array // consecutive[i][j][1] = sequences that switch to face j consecutive[i][j][1] = 0; for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { consecutive[i][j][1] = (consecutive[i][j][1] + dp[i - 1][j_prev]) % MOD; } } // consecutive[i][j][k] for k > 1 = sequences that extend consecutive occurrences of face j for (let k = 2; k <= rollMax[j - 1]; k++) { consecutive[i][j][k] = consecutive[i - 1][j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { result = (result + dp[n][j]) % MOD; } return result;} /** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming with space optimization. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulatorOptimized(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP arrays for current and previous rolls let dp = Array(FACES + 1).fill(0); let consecutive = Array(FACES + 1).fill().map(() => Array(16).fill(0)); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[j] = 1; consecutive[j][1] = 1; } // Fill DP arrays for (let i = 2; i <= n; i++) { // Save the previous DP arrays const prevDp = [...dp]; const prevConsecutive = consecutive.map(row => [...row]); // Reset current DP arrays dp = Array(FACES + 1).fill(0); consecutive = Array(FACES + 1).fill().map(() => Array(16).fill(0)); for (let j = 1; j <= FACES; j++) { // Calculate dp[j] for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { // Add sequences ending with a different face dp[j] = (dp[j] + prevDp[j_prev]) % MOD; } else { // Add sequences ending with the same face, but not exceeding rollMax for (let k = 1; k < rollMax[j - 1]; k++) { dp[j] = (dp[j] + prevConsecutive[j][k]) % MOD; } } } // Update consecutive array // consecutive[j][1] = sequences that switch to face j for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { consecutive[j][1] = (consecutive[j][1] + prevDp[j_prev]) % MOD; } } // consecutive[j][k] for k > 1 = sequences that extend consecutive occurrences of face j for (let k = 2; k <= rollMax[j - 1]; k++) { consecutive[j][k] = prevConsecutive[j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { result = (result + dp[j]) % MOD; } return result;} // Test casesconsole.log(dieSimulator(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulator(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulator(3, [1, 1, 1, 2, 2, 3])); // 181 console.log(dieSimulator2D(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulator2D(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulator2D(3, [1, 1, 1, 2, 2, 3])); // 181 console.log(dieSimulatorOptimized(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulatorOptimized(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulatorOptimized(3, [1, 1, 1, 2, 2, 3])); // 181
Define the states for the dynamic programming approach, considering the current roll number, face value, and consecutive occurrences.
Set up the base cases for the first roll, where there is one way to roll each face value.
Derive the recurrence relations by considering all possible previous states that can lead to the current state.
Use dynamic programming to fill the arrays from the base cases up to the target number of rolls.
Sum up all valid sequences of the target length to get the final answer, applying the modulo operation to avoid integer overflow.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the dice roll simulation problem using a different approach than shown above.
Handle the case where n is 1 (there are 6 possible sequences, one for each face value).
Handle the case where all values in rollMax are large enough to not restrict any sequences of length n.
Handle the case where all values in rollMax are 1, meaning no face value can appear consecutively.
Below is the implementation of the dice roll simulation:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209/** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming (3D) approach. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulator(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP array // dp[i][j][k] = number of sequences of length i ending with k consecutive occurrences of face j const dp = Array(n + 1).fill().map(() => Array(FACES + 1).fill().map(() => Array(16).fill(0) ) ); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[1][j][1] = 1; } // Fill DP array for (let i = 2; i <= n; i++) { for (let j = 1; j <= FACES; j++) { // Case 1: Starting a new consecutive sequence (k = 1) // We can come from any face j' != j with any valid consecutive count k' for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { for (let k_prev = 1; k_prev <= rollMax[j_prev - 1]; k_prev++) { dp[i][j][1] = (dp[i][j][1] + dp[i - 1][j_prev][k_prev]) % MOD; } } } // Case 2: Extending a consecutive sequence (k > 1) // We can only come from the same face j with consecutive count k-1 for (let k = 2; k <= rollMax[j - 1]; k++) { dp[i][j][k] = dp[i - 1][j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { for (let k = 1; k <= rollMax[j - 1]; k++) { result = (result + dp[n][j][k]) % MOD; } } return result;} /** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming (2D) approach. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulator2D(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP arrays // dp[i][j] = number of sequences of length i ending with face j const dp = Array(n + 1).fill().map(() => Array(FACES + 1).fill(0)); // consecutive[i][j][k] = number of sequences of length i ending with k consecutive occurrences of face j const consecutive = Array(n + 1).fill().map(() => Array(FACES + 1).fill().map(() => Array(16).fill(0) ) ); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[1][j] = 1; consecutive[1][j][1] = 1; } // Fill DP arrays for (let i = 2; i <= n; i++) { for (let j = 1; j <= FACES; j++) { // Calculate dp[i][j] for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { // Add sequences ending with a different face dp[i][j] = (dp[i][j] + dp[i - 1][j_prev]) % MOD; } else { // Add sequences ending with the same face, but not exceeding rollMax for (let k = 1; k < rollMax[j - 1]; k++) { dp[i][j] = (dp[i][j] + consecutive[i - 1][j][k]) % MOD; } } } // Update consecutive array // consecutive[i][j][1] = sequences that switch to face j consecutive[i][j][1] = 0; for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { consecutive[i][j][1] = (consecutive[i][j][1] + dp[i - 1][j_prev]) % MOD; } } // consecutive[i][j][k] for k > 1 = sequences that extend consecutive occurrences of face j for (let k = 2; k <= rollMax[j - 1]; k++) { consecutive[i][j][k] = consecutive[i - 1][j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { result = (result + dp[n][j]) % MOD; } return result;} /** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming with space optimization. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulatorOptimized(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP arrays for current and previous rolls let dp = Array(FACES + 1).fill(0); let consecutive = Array(FACES + 1).fill().map(() => Array(16).fill(0)); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[j] = 1; consecutive[j][1] = 1; } // Fill DP arrays for (let i = 2; i <= n; i++) { // Save the previous DP arrays const prevDp = [...dp]; const prevConsecutive = consecutive.map(row => [...row]); // Reset current DP arrays dp = Array(FACES + 1).fill(0); consecutive = Array(FACES + 1).fill().map(() => Array(16).fill(0)); for (let j = 1; j <= FACES; j++) { // Calculate dp[j] for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { // Add sequences ending with a different face dp[j] = (dp[j] + prevDp[j_prev]) % MOD; } else { // Add sequences ending with the same face, but not exceeding rollMax for (let k = 1; k < rollMax[j - 1]; k++) { dp[j] = (dp[j] + prevConsecutive[j][k]) % MOD; } } } // Update consecutive array // consecutive[j][1] = sequences that switch to face j for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { consecutive[j][1] = (consecutive[j][1] + prevDp[j_prev]) % MOD; } } // consecutive[j][k] for k > 1 = sequences that extend consecutive occurrences of face j for (let k = 2; k <= rollMax[j - 1]; k++) { consecutive[j][k] = prevConsecutive[j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { result = (result + dp[j]) % MOD; } return result;} // Test casesconsole.log(dieSimulator(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulator(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulator(3, [1, 1, 1, 2, 2, 3])); // 181 console.log(dieSimulator2D(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulator2D(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulator2D(3, [1, 1, 1, 2, 2, 3])); // 181 console.log(dieSimulatorOptimized(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulatorOptimized(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulatorOptimized(3, [1, 1, 1, 2, 2, 3])); // 181
Let's break down the implementation:
Implement the dice roll simulation solution in different programming languages.
Below is the implementation of the dice roll simulation in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209/** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming (3D) approach. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulator(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP array // dp[i][j][k] = number of sequences of length i ending with k consecutive occurrences of face j const dp = Array(n + 1).fill().map(() => Array(FACES + 1).fill().map(() => Array(16).fill(0) ) ); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[1][j][1] = 1; } // Fill DP array for (let i = 2; i <= n; i++) { for (let j = 1; j <= FACES; j++) { // Case 1: Starting a new consecutive sequence (k = 1) // We can come from any face j' != j with any valid consecutive count k' for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { for (let k_prev = 1; k_prev <= rollMax[j_prev - 1]; k_prev++) { dp[i][j][1] = (dp[i][j][1] + dp[i - 1][j_prev][k_prev]) % MOD; } } } // Case 2: Extending a consecutive sequence (k > 1) // We can only come from the same face j with consecutive count k-1 for (let k = 2; k <= rollMax[j - 1]; k++) { dp[i][j][k] = dp[i - 1][j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { for (let k = 1; k <= rollMax[j - 1]; k++) { result = (result + dp[n][j][k]) % MOD; } } return result;} /** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming (2D) approach. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulator2D(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP arrays // dp[i][j] = number of sequences of length i ending with face j const dp = Array(n + 1).fill().map(() => Array(FACES + 1).fill(0)); // consecutive[i][j][k] = number of sequences of length i ending with k consecutive occurrences of face j const consecutive = Array(n + 1).fill().map(() => Array(FACES + 1).fill().map(() => Array(16).fill(0) ) ); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[1][j] = 1; consecutive[1][j][1] = 1; } // Fill DP arrays for (let i = 2; i <= n; i++) { for (let j = 1; j <= FACES; j++) { // Calculate dp[i][j] for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { // Add sequences ending with a different face dp[i][j] = (dp[i][j] + dp[i - 1][j_prev]) % MOD; } else { // Add sequences ending with the same face, but not exceeding rollMax for (let k = 1; k < rollMax[j - 1]; k++) { dp[i][j] = (dp[i][j] + consecutive[i - 1][j][k]) % MOD; } } } // Update consecutive array // consecutive[i][j][1] = sequences that switch to face j consecutive[i][j][1] = 0; for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { consecutive[i][j][1] = (consecutive[i][j][1] + dp[i - 1][j_prev]) % MOD; } } // consecutive[i][j][k] for k > 1 = sequences that extend consecutive occurrences of face j for (let k = 2; k <= rollMax[j - 1]; k++) { consecutive[i][j][k] = consecutive[i - 1][j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { result = (result + dp[n][j]) % MOD; } return result;} /** * Calculate the number of distinct sequences that can be obtained with exact n rolls. * Dynamic Programming with space optimization. * * @param {number} n - Number of rolls * @param {number[]} rollMax - Maximum consecutive occurrences for each face value * @return {number} - Number of distinct sequences */function dieSimulatorOptimized(n, rollMax) { const MOD = 1000000007; const FACES = 6; // Initialize DP arrays for current and previous rolls let dp = Array(FACES + 1).fill(0); let consecutive = Array(FACES + 1).fill().map(() => Array(16).fill(0)); // Base cases: for the first roll, there is one way to roll each face for (let j = 1; j <= FACES; j++) { dp[j] = 1; consecutive[j][1] = 1; } // Fill DP arrays for (let i = 2; i <= n; i++) { // Save the previous DP arrays const prevDp = [...dp]; const prevConsecutive = consecutive.map(row => [...row]); // Reset current DP arrays dp = Array(FACES + 1).fill(0); consecutive = Array(FACES + 1).fill().map(() => Array(16).fill(0)); for (let j = 1; j <= FACES; j++) { // Calculate dp[j] for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { // Add sequences ending with a different face dp[j] = (dp[j] + prevDp[j_prev]) % MOD; } else { // Add sequences ending with the same face, but not exceeding rollMax for (let k = 1; k < rollMax[j - 1]; k++) { dp[j] = (dp[j] + prevConsecutive[j][k]) % MOD; } } } // Update consecutive array // consecutive[j][1] = sequences that switch to face j for (let j_prev = 1; j_prev <= FACES; j_prev++) { if (j_prev !== j) { consecutive[j][1] = (consecutive[j][1] + prevDp[j_prev]) % MOD; } } // consecutive[j][k] for k > 1 = sequences that extend consecutive occurrences of face j for (let k = 2; k <= rollMax[j - 1]; k++) { consecutive[j][k] = prevConsecutive[j][k - 1]; } } } // Calculate the final answer: sum of all valid sequences of length n let result = 0; for (let j = 1; j <= FACES; j++) { result = (result + dp[j]) % MOD; } return result;} // Test casesconsole.log(dieSimulator(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulator(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulator(3, [1, 1, 1, 2, 2, 3])); // 181 console.log(dieSimulator2D(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulator2D(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulator2D(3, [1, 1, 1, 2, 2, 3])); // 181 console.log(dieSimulatorOptimized(2, [1, 1, 2, 2, 2, 3])); // 34console.log(dieSimulatorOptimized(2, [1, 1, 1, 1, 1, 1])); // 30console.log(dieSimulatorOptimized(3, [1, 1, 1, 2, 2, 3])); // 181
Define the states for the dynamic programming approach, considering the current roll number, face value, and consecutive occurrences.
Set up the base cases for the first roll, where there is one way to roll each face value.
Derive the recurrence relations by considering all possible previous states that can lead to the current state.
Use dynamic programming to fill the arrays from the base cases up to the target number of rolls.
Sum up all valid sequences of the target length to get the final answer, applying the modulo operation to avoid integer overflow.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the dice roll simulation problem using a different approach than shown above.
Handle the case where n is 1 (there are 6 possible sequences, one for each face value).
Handle the case where all values in rollMax are large enough to not restrict any sequences of length n.
Handle the case where all values in rollMax are 1, meaning no face value can appear consecutively.