Below is the implementation of the dna sequence matcher:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142/** * Recursive approach (brute force) * Time Complexity: O(2^n) - Exponential in worst case * Space Complexity: O(m+n) - Recursion stack * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctRecursive(s, t) { function count(i, j) { // Base cases if (j === t.length) { return 1; // Found a valid subsequence } if (i === s.length) { return 0; // Can't form t } // If characters match, we have two choices if (s[i] === t[j]) { return count(i + 1, j + 1) + count(i + 1, j); } else { // If characters don't match, we can only skip s[i] return count(i + 1, j); } } return count(0, 0);} /** * Memoization approach (top-down dynamic programming) * Time Complexity: O(m*n) - Each subproblem computed once * Space Complexity: O(m*n) - For memoization and recursion stack * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctMemo(s, t) { const m = s.length; const n = t.length; // Create memo table const memo = Array(m + 1).fill().map(() => Array(n + 1).fill(-1)); function count(i, j) { // Check memo if (memo[i][j] !== -1) { return memo[i][j]; } // Base cases if (j === n) { return 1; // Found a valid subsequence } if (i === m) { return 0; // Can't form t } // If characters match, we have two choices if (s[i] === t[j]) { memo[i][j] = count(i + 1, j + 1) + count(i + 1, j); } else { // If characters don't match, we can only skip s[i] memo[i][j] = count(i + 1, j); } return memo[i][j]; } return count(0, 0);} /** * Tabulation approach (bottom-up dynamic programming) * Time Complexity: O(m*n) - Fill 2D DP array * Space Complexity: O(m*n) - For the DP array * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctDP(s, t) { const m = s.length; const n = t.length; // Create DP array const dp = Array(m + 1).fill().map(() => Array(n + 1).fill(0)); // Base case: empty string t is a subsequence of any string s for (let i = 0; i <= m; i++) { dp[i][0] = 1; } // Fill DP array for (let i = 1; i <= m; i++) { for (let j = 1; j <= n; j++) { if (s[i - 1] === t[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; } else { dp[i][j] = dp[i - 1][j]; } } } return dp[m][n];} /** * Space-optimized dynamic programming approach * Time Complexity: O(m*n) - Process each character * Space Complexity: O(n) - 1D DP array * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinct(s, t) { const n = t.length; // Create 1D DP array const dp = Array(n + 1).fill(0); dp[0] = 1; // Base case: empty string t is a subsequence of any string s // Process each character in s for (const char of s) { // Update DP array from right to left for (let j = n; j > 0; j--) { if (char === t[j - 1]) { dp[j] += dp[j - 1]; } } } return dp[n];} // Test casesconsole.log(numDistinct("rabbbit", "rabbit")); // 3console.log(numDistinct("babgbag", "bag")); // 5
Let's break down the implementation:
Implement the dna sequence matcher solution in different programming languages.
Below is the implementation of the dna sequence matcher in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142/** * Recursive approach (brute force) * Time Complexity: O(2^n) - Exponential in worst case * Space Complexity: O(m+n) - Recursion stack * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctRecursive(s, t) { function count(i, j) { // Base cases if (j === t.length) { return 1; // Found a valid subsequence } if (i === s.length) { return 0; // Can't form t } // If characters match, we have two choices if (s[i] === t[j]) { return count(i + 1, j + 1) + count(i + 1, j); } else { // If characters don't match, we can only skip s[i] return count(i + 1, j); } } return count(0, 0);} /** * Memoization approach (top-down dynamic programming) * Time Complexity: O(m*n) - Each subproblem computed once * Space Complexity: O(m*n) - For memoization and recursion stack * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctMemo(s, t) { const m = s.length; const n = t.length; // Create memo table const memo = Array(m + 1).fill().map(() => Array(n + 1).fill(-1)); function count(i, j) { // Check memo if (memo[i][j] !== -1) { return memo[i][j]; } // Base cases if (j === n) { return 1; // Found a valid subsequence } if (i === m) { return 0; // Can't form t } // If characters match, we have two choices if (s[i] === t[j]) { memo[i][j] = count(i + 1, j + 1) + count(i + 1, j); } else { // If characters don't match, we can only skip s[i] memo[i][j] = count(i + 1, j); } return memo[i][j]; } return count(0, 0);} /** * Tabulation approach (bottom-up dynamic programming) * Time Complexity: O(m*n) - Fill 2D DP array * Space Complexity: O(m*n) - For the DP array * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctDP(s, t) { const m = s.length; const n = t.length; // Create DP array const dp = Array(m + 1).fill().map(() => Array(n + 1).fill(0)); // Base case: empty string t is a subsequence of any string s for (let i = 0; i <= m; i++) { dp[i][0] = 1; } // Fill DP array for (let i = 1; i <= m; i++) { for (let j = 1; j <= n; j++) { if (s[i - 1] === t[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; } else { dp[i][j] = dp[i - 1][j]; } } } return dp[m][n];} /** * Space-optimized dynamic programming approach * Time Complexity: O(m*n) - Process each character * Space Complexity: O(n) - 1D DP array * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinct(s, t) { const n = t.length; // Create 1D DP array const dp = Array(n + 1).fill(0); dp[0] = 1; // Base case: empty string t is a subsequence of any string s // Process each character in s for (const char of s) { // Update DP array from right to left for (let j = n; j > 0; j--) { if (char === t[j - 1]) { dp[j] += dp[j - 1]; } } } return dp[n];} // Test casesconsole.log(numDistinct("rabbbit", "rabbit")); // 3console.log(numDistinct("babgbag", "bag")); // 5
First, understand that we need to count the number of distinct subsequences of string S that equal string T.
Recognize that for each character in S, we have two choices if it matches the current character in T: include it or skip it.
Start with a recursive solution to understand the problem better, exploring all possible ways to form string T from string S.
Notice that the recursive solution has overlapping subproblems. Use memoization to avoid redundant calculations.
Transform the recursive solution into an iterative one using a bottom-up dynamic programming approach.
Observe that we only need the previous row of the DP table to calculate the current row, allowing us to reduce the space complexity.
Pay special attention to edge cases like empty strings or when characters don't match.
Verify the solution with different test cases, including the provided examples.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the dna sequence matcher problem using a different approach than shown above.
If T is empty, there is exactly 1 way to form it (by selecting no characters from S).
If T is longer than S, there are 0 ways to form T from S.
If T contains characters that are not in S, there are 0 ways to form T from S.
For large inputs, be careful about integer overflow. Use long or BigInteger for intermediate calculations.
Below is the implementation of the dna sequence matcher:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142/** * Recursive approach (brute force) * Time Complexity: O(2^n) - Exponential in worst case * Space Complexity: O(m+n) - Recursion stack * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctRecursive(s, t) { function count(i, j) { // Base cases if (j === t.length) { return 1; // Found a valid subsequence } if (i === s.length) { return 0; // Can't form t } // If characters match, we have two choices if (s[i] === t[j]) { return count(i + 1, j + 1) + count(i + 1, j); } else { // If characters don't match, we can only skip s[i] return count(i + 1, j); } } return count(0, 0);} /** * Memoization approach (top-down dynamic programming) * Time Complexity: O(m*n) - Each subproblem computed once * Space Complexity: O(m*n) - For memoization and recursion stack * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctMemo(s, t) { const m = s.length; const n = t.length; // Create memo table const memo = Array(m + 1).fill().map(() => Array(n + 1).fill(-1)); function count(i, j) { // Check memo if (memo[i][j] !== -1) { return memo[i][j]; } // Base cases if (j === n) { return 1; // Found a valid subsequence } if (i === m) { return 0; // Can't form t } // If characters match, we have two choices if (s[i] === t[j]) { memo[i][j] = count(i + 1, j + 1) + count(i + 1, j); } else { // If characters don't match, we can only skip s[i] memo[i][j] = count(i + 1, j); } return memo[i][j]; } return count(0, 0);} /** * Tabulation approach (bottom-up dynamic programming) * Time Complexity: O(m*n) - Fill 2D DP array * Space Complexity: O(m*n) - For the DP array * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctDP(s, t) { const m = s.length; const n = t.length; // Create DP array const dp = Array(m + 1).fill().map(() => Array(n + 1).fill(0)); // Base case: empty string t is a subsequence of any string s for (let i = 0; i <= m; i++) { dp[i][0] = 1; } // Fill DP array for (let i = 1; i <= m; i++) { for (let j = 1; j <= n; j++) { if (s[i - 1] === t[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; } else { dp[i][j] = dp[i - 1][j]; } } } return dp[m][n];} /** * Space-optimized dynamic programming approach * Time Complexity: O(m*n) - Process each character * Space Complexity: O(n) - 1D DP array * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinct(s, t) { const n = t.length; // Create 1D DP array const dp = Array(n + 1).fill(0); dp[0] = 1; // Base case: empty string t is a subsequence of any string s // Process each character in s for (const char of s) { // Update DP array from right to left for (let j = n; j > 0; j--) { if (char === t[j - 1]) { dp[j] += dp[j - 1]; } } } return dp[n];} // Test casesconsole.log(numDistinct("rabbbit", "rabbit")); // 3console.log(numDistinct("babgbag", "bag")); // 5
Let's break down the implementation:
Implement the dna sequence matcher solution in different programming languages.
Below is the implementation of the dna sequence matcher in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142/** * Recursive approach (brute force) * Time Complexity: O(2^n) - Exponential in worst case * Space Complexity: O(m+n) - Recursion stack * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctRecursive(s, t) { function count(i, j) { // Base cases if (j === t.length) { return 1; // Found a valid subsequence } if (i === s.length) { return 0; // Can't form t } // If characters match, we have two choices if (s[i] === t[j]) { return count(i + 1, j + 1) + count(i + 1, j); } else { // If characters don't match, we can only skip s[i] return count(i + 1, j); } } return count(0, 0);} /** * Memoization approach (top-down dynamic programming) * Time Complexity: O(m*n) - Each subproblem computed once * Space Complexity: O(m*n) - For memoization and recursion stack * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctMemo(s, t) { const m = s.length; const n = t.length; // Create memo table const memo = Array(m + 1).fill().map(() => Array(n + 1).fill(-1)); function count(i, j) { // Check memo if (memo[i][j] !== -1) { return memo[i][j]; } // Base cases if (j === n) { return 1; // Found a valid subsequence } if (i === m) { return 0; // Can't form t } // If characters match, we have two choices if (s[i] === t[j]) { memo[i][j] = count(i + 1, j + 1) + count(i + 1, j); } else { // If characters don't match, we can only skip s[i] memo[i][j] = count(i + 1, j); } return memo[i][j]; } return count(0, 0);} /** * Tabulation approach (bottom-up dynamic programming) * Time Complexity: O(m*n) - Fill 2D DP array * Space Complexity: O(m*n) - For the DP array * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinctDP(s, t) { const m = s.length; const n = t.length; // Create DP array const dp = Array(m + 1).fill().map(() => Array(n + 1).fill(0)); // Base case: empty string t is a subsequence of any string s for (let i = 0; i <= m; i++) { dp[i][0] = 1; } // Fill DP array for (let i = 1; i <= m; i++) { for (let j = 1; j <= n; j++) { if (s[i - 1] === t[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; } else { dp[i][j] = dp[i - 1][j]; } } } return dp[m][n];} /** * Space-optimized dynamic programming approach * Time Complexity: O(m*n) - Process each character * Space Complexity: O(n) - 1D DP array * * @param {string} s - Source string * @param {string} t - Target string * @return {number} - Number of distinct subsequences */function numDistinct(s, t) { const n = t.length; // Create 1D DP array const dp = Array(n + 1).fill(0); dp[0] = 1; // Base case: empty string t is a subsequence of any string s // Process each character in s for (const char of s) { // Update DP array from right to left for (let j = n; j > 0; j--) { if (char === t[j - 1]) { dp[j] += dp[j - 1]; } } } return dp[n];} // Test casesconsole.log(numDistinct("rabbbit", "rabbit")); // 3console.log(numDistinct("babgbag", "bag")); // 5
First, understand that we need to count the number of distinct subsequences of string S that equal string T.
Recognize that for each character in S, we have two choices if it matches the current character in T: include it or skip it.
Start with a recursive solution to understand the problem better, exploring all possible ways to form string T from string S.
Notice that the recursive solution has overlapping subproblems. Use memoization to avoid redundant calculations.
Transform the recursive solution into an iterative one using a bottom-up dynamic programming approach.
Observe that we only need the previous row of the DP table to calculate the current row, allowing us to reduce the space complexity.
Pay special attention to edge cases like empty strings or when characters don't match.
Verify the solution with different test cases, including the provided examples.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the dna sequence matcher problem using a different approach than shown above.
If T is empty, there is exactly 1 way to form it (by selecting no characters from S).
If T is longer than S, there are 0 ways to form T from S.
If T contains characters that are not in S, there are 0 ways to form T from S.
For large inputs, be careful about integer overflow. Use long or BigInteger for intermediate calculations.