Below is the implementation of the knight probability in chessboard:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205/** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming (3D) approach. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbability(n, k, row, column) { // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize DP array // dp[m][r][c] = probability of the knight being at cell (r, c) after m moves const dp = Array(k + 1).fill().map(() => Array(n).fill().map(() => Array(n).fill(0.0) ) ); // Base case: the knight is at the starting position with 100% probability after 0 moves dp[0][row][column] = 1.0; // Fill DP array for (let m = 1; m <= k; m++) { for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { // For each possible knight move for (const [dr, dc] of directions) { // Calculate the previous position const prevRow = r - dr; const prevCol = c - dc; // If the previous position is valid (on the board) if (prevRow >= 0 && prevRow < n && prevCol >= 0 && prevCol < n) { // Add the probability of the knight being at the previous position // divided by 8 (since there are 8 possible moves, each with equal probability) dp[m][r][c] += dp[m - 1][prevRow][prevCol] / 8.0; } } } } } // Calculate the final probability: sum of dp[k][r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += dp[k][r][c]; } } return result;} /** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming with Space Optimization. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbabilityOptimized(n, k, row, column) { // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize arrays for previous and current moves let prev = Array(n).fill().map(() => Array(n).fill(0.0)); let curr = Array(n).fill().map(() => Array(n).fill(0.0)); // Base case: the knight is at the starting position with 100% probability after 0 moves prev[row][column] = 1.0; // Fill arrays for (let m = 1; m <= k; m++) { // Reset curr array curr = Array(n).fill().map(() => Array(n).fill(0.0)); for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { // For each possible knight move for (const [dr, dc] of directions) { // Calculate the previous position const prevRow = r - dr; const prevCol = c - dc; // If the previous position is valid (on the board) if (prevRow >= 0 && prevRow < n && prevCol >= 0 && prevCol < n) { // Add the probability of the knight being at the previous position // divided by 8 (since there are 8 possible moves, each with equal probability) curr[r][c] += prev[prevRow][prevCol] / 8.0; } } } } // Update prev array prev = curr.map(row => [...row]); } // Calculate the final probability: sum of prev[r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += prev[r][c]; } } return result;} /** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming with further optimization. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbabilityMoreOptimized(n, k, row, column) { // Early return for edge cases if (k === 0) { return 1.0; } // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize arrays for previous and current moves let prev = Array(n).fill().map(() => Array(n).fill(0.0)); let curr = Array(n).fill().map(() => Array(n).fill(0.0)); // Base case: the knight is at the starting position with 100% probability after 0 moves prev[row][column] = 1.0; // Fill arrays for (let m = 1; m <= k; m++) { // Reset curr array curr = Array(n).fill().map(() => Array(n).fill(0.0)); for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { if (prev[r][c] === 0.0) { continue; // Skip cells with zero probability } // For each possible knight move for (const [dr, dc] of directions) { // Calculate the next position const nextRow = r + dr; const nextCol = c + dc; // If the next position is valid (on the board) if (nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n) { // Add the probability of the knight being at the current position // divided by 8 (since there are 8 possible moves, each with equal probability) curr[nextRow][nextCol] += prev[r][c] / 8.0; } } } } // Update prev array prev = curr.map(row => [...row]); } // Calculate the final probability: sum of prev[r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += prev[r][c]; } } return result;} // Test casesconsole.log(knightProbability(3, 2, 0, 0)); // 0.06250console.log(knightProbability(1, 0, 0, 0)); // 1.00000console.log(knightProbability(8, 3, 3, 3)); // 0.33594 console.log(knightProbabilityOptimized(3, 2, 0, 0)); // 0.06250console.log(knightProbabilityOptimized(1, 0, 0, 0)); // 1.00000console.log(knightProbabilityOptimized(8, 3, 3, 3)); // 0.33594 console.log(knightProbabilityMoreOptimized(3, 2, 0, 0)); // 0.06250console.log(knightProbabilityMoreOptimized(1, 0, 0, 0)); // 1.00000console.log(knightProbabilityMoreOptimized(8, 3, 3, 3)); // 0.33594
Let's break down the implementation:
Implement the knight probability in chessboard solution in different programming languages.
Below is the implementation of the knight probability in chessboard in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205/** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming (3D) approach. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbability(n, k, row, column) { // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize DP array // dp[m][r][c] = probability of the knight being at cell (r, c) after m moves const dp = Array(k + 1).fill().map(() => Array(n).fill().map(() => Array(n).fill(0.0) ) ); // Base case: the knight is at the starting position with 100% probability after 0 moves dp[0][row][column] = 1.0; // Fill DP array for (let m = 1; m <= k; m++) { for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { // For each possible knight move for (const [dr, dc] of directions) { // Calculate the previous position const prevRow = r - dr; const prevCol = c - dc; // If the previous position is valid (on the board) if (prevRow >= 0 && prevRow < n && prevCol >= 0 && prevCol < n) { // Add the probability of the knight being at the previous position // divided by 8 (since there are 8 possible moves, each with equal probability) dp[m][r][c] += dp[m - 1][prevRow][prevCol] / 8.0; } } } } } // Calculate the final probability: sum of dp[k][r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += dp[k][r][c]; } } return result;} /** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming with Space Optimization. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbabilityOptimized(n, k, row, column) { // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize arrays for previous and current moves let prev = Array(n).fill().map(() => Array(n).fill(0.0)); let curr = Array(n).fill().map(() => Array(n).fill(0.0)); // Base case: the knight is at the starting position with 100% probability after 0 moves prev[row][column] = 1.0; // Fill arrays for (let m = 1; m <= k; m++) { // Reset curr array curr = Array(n).fill().map(() => Array(n).fill(0.0)); for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { // For each possible knight move for (const [dr, dc] of directions) { // Calculate the previous position const prevRow = r - dr; const prevCol = c - dc; // If the previous position is valid (on the board) if (prevRow >= 0 && prevRow < n && prevCol >= 0 && prevCol < n) { // Add the probability of the knight being at the previous position // divided by 8 (since there are 8 possible moves, each with equal probability) curr[r][c] += prev[prevRow][prevCol] / 8.0; } } } } // Update prev array prev = curr.map(row => [...row]); } // Calculate the final probability: sum of prev[r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += prev[r][c]; } } return result;} /** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming with further optimization. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbabilityMoreOptimized(n, k, row, column) { // Early return for edge cases if (k === 0) { return 1.0; } // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize arrays for previous and current moves let prev = Array(n).fill().map(() => Array(n).fill(0.0)); let curr = Array(n).fill().map(() => Array(n).fill(0.0)); // Base case: the knight is at the starting position with 100% probability after 0 moves prev[row][column] = 1.0; // Fill arrays for (let m = 1; m <= k; m++) { // Reset curr array curr = Array(n).fill().map(() => Array(n).fill(0.0)); for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { if (prev[r][c] === 0.0) { continue; // Skip cells with zero probability } // For each possible knight move for (const [dr, dc] of directions) { // Calculate the next position const nextRow = r + dr; const nextCol = c + dc; // If the next position is valid (on the board) if (nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n) { // Add the probability of the knight being at the current position // divided by 8 (since there are 8 possible moves, each with equal probability) curr[nextRow][nextCol] += prev[r][c] / 8.0; } } } } // Update prev array prev = curr.map(row => [...row]); } // Calculate the final probability: sum of prev[r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += prev[r][c]; } } return result;} // Test casesconsole.log(knightProbability(3, 2, 0, 0)); // 0.06250console.log(knightProbability(1, 0, 0, 0)); // 1.00000console.log(knightProbability(8, 3, 3, 3)); // 0.33594 console.log(knightProbabilityOptimized(3, 2, 0, 0)); // 0.06250console.log(knightProbabilityOptimized(1, 0, 0, 0)); // 1.00000console.log(knightProbabilityOptimized(8, 3, 3, 3)); // 0.33594 console.log(knightProbabilityMoreOptimized(3, 2, 0, 0)); // 0.06250console.log(knightProbabilityMoreOptimized(1, 0, 0, 0)); // 1.00000console.log(knightProbabilityMoreOptimized(8, 3, 3, 3)); // 0.33594
Define the possible knight moves on a chessboard, considering the L-shaped movement pattern of a chess knight.
Set up a dynamic programming array to keep track of the probability of the knight being at each cell after a certain number of moves.
Define the base case: the knight is at the starting position with 100% probability after 0 moves.
For each move and each cell on the board, calculate the probability of the knight being at that cell by considering all possible previous positions.
Sum up the probabilities of the knight being at each cell on the board after k moves to get the final probability.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the knight probability in chessboard problem using a different approach than shown above.
Handle the case where k is 0 (the knight is already on the board with 100% probability).
Handle the case where the board is small (n = 1), which limits the knight's possible moves.
Handle the case where the board is large and the knight makes many moves, which can lead to a very small probability.
Below is the implementation of the knight probability in chessboard:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205/** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming (3D) approach. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbability(n, k, row, column) { // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize DP array // dp[m][r][c] = probability of the knight being at cell (r, c) after m moves const dp = Array(k + 1).fill().map(() => Array(n).fill().map(() => Array(n).fill(0.0) ) ); // Base case: the knight is at the starting position with 100% probability after 0 moves dp[0][row][column] = 1.0; // Fill DP array for (let m = 1; m <= k; m++) { for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { // For each possible knight move for (const [dr, dc] of directions) { // Calculate the previous position const prevRow = r - dr; const prevCol = c - dc; // If the previous position is valid (on the board) if (prevRow >= 0 && prevRow < n && prevCol >= 0 && prevCol < n) { // Add the probability of the knight being at the previous position // divided by 8 (since there are 8 possible moves, each with equal probability) dp[m][r][c] += dp[m - 1][prevRow][prevCol] / 8.0; } } } } } // Calculate the final probability: sum of dp[k][r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += dp[k][r][c]; } } return result;} /** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming with Space Optimization. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbabilityOptimized(n, k, row, column) { // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize arrays for previous and current moves let prev = Array(n).fill().map(() => Array(n).fill(0.0)); let curr = Array(n).fill().map(() => Array(n).fill(0.0)); // Base case: the knight is at the starting position with 100% probability after 0 moves prev[row][column] = 1.0; // Fill arrays for (let m = 1; m <= k; m++) { // Reset curr array curr = Array(n).fill().map(() => Array(n).fill(0.0)); for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { // For each possible knight move for (const [dr, dc] of directions) { // Calculate the previous position const prevRow = r - dr; const prevCol = c - dc; // If the previous position is valid (on the board) if (prevRow >= 0 && prevRow < n && prevCol >= 0 && prevCol < n) { // Add the probability of the knight being at the previous position // divided by 8 (since there are 8 possible moves, each with equal probability) curr[r][c] += prev[prevRow][prevCol] / 8.0; } } } } // Update prev array prev = curr.map(row => [...row]); } // Calculate the final probability: sum of prev[r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += prev[r][c]; } } return result;} /** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming with further optimization. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbabilityMoreOptimized(n, k, row, column) { // Early return for edge cases if (k === 0) { return 1.0; } // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize arrays for previous and current moves let prev = Array(n).fill().map(() => Array(n).fill(0.0)); let curr = Array(n).fill().map(() => Array(n).fill(0.0)); // Base case: the knight is at the starting position with 100% probability after 0 moves prev[row][column] = 1.0; // Fill arrays for (let m = 1; m <= k; m++) { // Reset curr array curr = Array(n).fill().map(() => Array(n).fill(0.0)); for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { if (prev[r][c] === 0.0) { continue; // Skip cells with zero probability } // For each possible knight move for (const [dr, dc] of directions) { // Calculate the next position const nextRow = r + dr; const nextCol = c + dc; // If the next position is valid (on the board) if (nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n) { // Add the probability of the knight being at the current position // divided by 8 (since there are 8 possible moves, each with equal probability) curr[nextRow][nextCol] += prev[r][c] / 8.0; } } } } // Update prev array prev = curr.map(row => [...row]); } // Calculate the final probability: sum of prev[r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += prev[r][c]; } } return result;} // Test casesconsole.log(knightProbability(3, 2, 0, 0)); // 0.06250console.log(knightProbability(1, 0, 0, 0)); // 1.00000console.log(knightProbability(8, 3, 3, 3)); // 0.33594 console.log(knightProbabilityOptimized(3, 2, 0, 0)); // 0.06250console.log(knightProbabilityOptimized(1, 0, 0, 0)); // 1.00000console.log(knightProbabilityOptimized(8, 3, 3, 3)); // 0.33594 console.log(knightProbabilityMoreOptimized(3, 2, 0, 0)); // 0.06250console.log(knightProbabilityMoreOptimized(1, 0, 0, 0)); // 1.00000console.log(knightProbabilityMoreOptimized(8, 3, 3, 3)); // 0.33594
Let's break down the implementation:
Implement the knight probability in chessboard solution in different programming languages.
Below is the implementation of the knight probability in chessboard in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205/** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming (3D) approach. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbability(n, k, row, column) { // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize DP array // dp[m][r][c] = probability of the knight being at cell (r, c) after m moves const dp = Array(k + 1).fill().map(() => Array(n).fill().map(() => Array(n).fill(0.0) ) ); // Base case: the knight is at the starting position with 100% probability after 0 moves dp[0][row][column] = 1.0; // Fill DP array for (let m = 1; m <= k; m++) { for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { // For each possible knight move for (const [dr, dc] of directions) { // Calculate the previous position const prevRow = r - dr; const prevCol = c - dc; // If the previous position is valid (on the board) if (prevRow >= 0 && prevRow < n && prevCol >= 0 && prevCol < n) { // Add the probability of the knight being at the previous position // divided by 8 (since there are 8 possible moves, each with equal probability) dp[m][r][c] += dp[m - 1][prevRow][prevCol] / 8.0; } } } } } // Calculate the final probability: sum of dp[k][r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += dp[k][r][c]; } } return result;} /** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming with Space Optimization. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbabilityOptimized(n, k, row, column) { // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize arrays for previous and current moves let prev = Array(n).fill().map(() => Array(n).fill(0.0)); let curr = Array(n).fill().map(() => Array(n).fill(0.0)); // Base case: the knight is at the starting position with 100% probability after 0 moves prev[row][column] = 1.0; // Fill arrays for (let m = 1; m <= k; m++) { // Reset curr array curr = Array(n).fill().map(() => Array(n).fill(0.0)); for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { // For each possible knight move for (const [dr, dc] of directions) { // Calculate the previous position const prevRow = r - dr; const prevCol = c - dc; // If the previous position is valid (on the board) if (prevRow >= 0 && prevRow < n && prevCol >= 0 && prevCol < n) { // Add the probability of the knight being at the previous position // divided by 8 (since there are 8 possible moves, each with equal probability) curr[r][c] += prev[prevRow][prevCol] / 8.0; } } } } // Update prev array prev = curr.map(row => [...row]); } // Calculate the final probability: sum of prev[r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += prev[r][c]; } } return result;} /** * Calculate the probability that the knight remains on the board after k moves. * Dynamic Programming with further optimization. * * @param {number} n - Size of the chessboard * @param {number} k - Number of moves * @param {number} row - Starting row * @param {number} column - Starting column * @return {number} - Probability that the knight remains on the board */function knightProbabilityMoreOptimized(n, k, row, column) { // Early return for edge cases if (k === 0) { return 1.0; } // Define the possible knight moves const directions = [ [-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1] ]; // Initialize arrays for previous and current moves let prev = Array(n).fill().map(() => Array(n).fill(0.0)); let curr = Array(n).fill().map(() => Array(n).fill(0.0)); // Base case: the knight is at the starting position with 100% probability after 0 moves prev[row][column] = 1.0; // Fill arrays for (let m = 1; m <= k; m++) { // Reset curr array curr = Array(n).fill().map(() => Array(n).fill(0.0)); for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { if (prev[r][c] === 0.0) { continue; // Skip cells with zero probability } // For each possible knight move for (const [dr, dc] of directions) { // Calculate the next position const nextRow = r + dr; const nextCol = c + dc; // If the next position is valid (on the board) if (nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n) { // Add the probability of the knight being at the current position // divided by 8 (since there are 8 possible moves, each with equal probability) curr[nextRow][nextCol] += prev[r][c] / 8.0; } } } } // Update prev array prev = curr.map(row => [...row]); } // Calculate the final probability: sum of prev[r][c] for all cells (r, c) on the board let result = 0.0; for (let r = 0; r < n; r++) { for (let c = 0; c < n; c++) { result += prev[r][c]; } } return result;} // Test casesconsole.log(knightProbability(3, 2, 0, 0)); // 0.06250console.log(knightProbability(1, 0, 0, 0)); // 1.00000console.log(knightProbability(8, 3, 3, 3)); // 0.33594 console.log(knightProbabilityOptimized(3, 2, 0, 0)); // 0.06250console.log(knightProbabilityOptimized(1, 0, 0, 0)); // 1.00000console.log(knightProbabilityOptimized(8, 3, 3, 3)); // 0.33594 console.log(knightProbabilityMoreOptimized(3, 2, 0, 0)); // 0.06250console.log(knightProbabilityMoreOptimized(1, 0, 0, 0)); // 1.00000console.log(knightProbabilityMoreOptimized(8, 3, 3, 3)); // 0.33594
Define the possible knight moves on a chessboard, considering the L-shaped movement pattern of a chess knight.
Set up a dynamic programming array to keep track of the probability of the knight being at each cell after a certain number of moves.
Define the base case: the knight is at the starting position with 100% probability after 0 moves.
For each move and each cell on the board, calculate the probability of the knight being at that cell by considering all possible previous positions.
Sum up the probabilities of the knight being at each cell on the board after k moves to get the final probability.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the knight probability in chessboard problem using a different approach than shown above.
Handle the case where k is 0 (the knight is already on the board with 100% probability).
Handle the case where the board is small (n = 1), which limits the knight's possible moves.
Handle the case where the board is large and the knight makes many moves, which can lead to a very small probability.