Below is the implementation of the number of ways to stay in the same place after some steps:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149/** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming (2D) approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWays(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, steps); // Initialize DP array const dp = Array(steps + 1).fill().map(() => Array(maxPosition + 1).fill(0)); // Base case: one way to be at position 0 after 0 steps dp[0][0] = 1; // Fill DP array for (let i = 1; i <= steps; i++) { for (let j = 0; j <= maxPosition; j++) { // Stay at position j dp[i][j] = dp[i - 1][j]; // Move right from position j-1 if (j > 0) { dp[i][j] = (dp[i][j] + dp[i - 1][j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { dp[i][j] = (dp[i][j] + dp[i - 1][j + 1]) % MOD; } } } return dp[steps][0];} /** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming (1D) approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWaysOptimized(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, steps); // Initialize arrays for previous and current steps let prev = Array(maxPosition + 1).fill(0); let curr = Array(maxPosition + 1).fill(0); // Base case: one way to be at position 0 after 0 steps prev[0] = 1; // Fill arrays for (let i = 1; i <= steps; i++) { // Reset current array curr = Array(maxPosition + 1).fill(0); for (let j = 0; j <= maxPosition; j++) { // Stay at position j curr[j] = prev[j]; // Move right from position j-1 if (j > 0) { curr[j] = (curr[j] + prev[j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { curr[j] = (curr[j] + prev[j + 1]) % MOD; } } // Swap arrays for next step [prev, curr] = [curr, prev]; } return prev[0];} /** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming with Further Optimization approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWaysFurtherOptimized(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, Math.floor(steps / 2)); // Initialize arrays for previous and current steps let prev = Array(maxPosition + 1).fill(0); let curr = Array(maxPosition + 1).fill(0); // Base case: one way to be at position 0 after 0 steps prev[0] = 1; // Fill arrays for (let i = 1; i <= steps; i++) { // Reset current array curr = Array(maxPosition + 1).fill(0); for (let j = 0; j <= maxPosition; j++) { // Stay at position j curr[j] = prev[j]; // Move right from position j-1 if (j > 0) { curr[j] = (curr[j] + prev[j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { curr[j] = (curr[j] + prev[j + 1]) % MOD; } } // Swap arrays for next step [prev, curr] = [curr, prev]; } return prev[0];} // Test casesconsole.log(numWays(3, 2)); // 4console.log(numWays(2, 4)); // 2console.log(numWays(4, 2)); // 8 console.log(numWaysOptimized(3, 2)); // 4console.log(numWaysOptimized(2, 4)); // 2console.log(numWaysOptimized(4, 2)); // 8 console.log(numWaysFurtherOptimized(3, 2)); // 4console.log(numWaysFurtherOptimized(2, 4)); // 2console.log(numWaysFurtherOptimized(4, 2)); // 8
Let's break down the implementation:
Implement the number of ways to stay in the same place after some steps solution in different programming languages.
Below is the implementation of the number of ways to stay in the same place after some steps in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149/** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming (2D) approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWays(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, steps); // Initialize DP array const dp = Array(steps + 1).fill().map(() => Array(maxPosition + 1).fill(0)); // Base case: one way to be at position 0 after 0 steps dp[0][0] = 1; // Fill DP array for (let i = 1; i <= steps; i++) { for (let j = 0; j <= maxPosition; j++) { // Stay at position j dp[i][j] = dp[i - 1][j]; // Move right from position j-1 if (j > 0) { dp[i][j] = (dp[i][j] + dp[i - 1][j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { dp[i][j] = (dp[i][j] + dp[i - 1][j + 1]) % MOD; } } } return dp[steps][0];} /** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming (1D) approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWaysOptimized(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, steps); // Initialize arrays for previous and current steps let prev = Array(maxPosition + 1).fill(0); let curr = Array(maxPosition + 1).fill(0); // Base case: one way to be at position 0 after 0 steps prev[0] = 1; // Fill arrays for (let i = 1; i <= steps; i++) { // Reset current array curr = Array(maxPosition + 1).fill(0); for (let j = 0; j <= maxPosition; j++) { // Stay at position j curr[j] = prev[j]; // Move right from position j-1 if (j > 0) { curr[j] = (curr[j] + prev[j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { curr[j] = (curr[j] + prev[j + 1]) % MOD; } } // Swap arrays for next step [prev, curr] = [curr, prev]; } return prev[0];} /** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming with Further Optimization approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWaysFurtherOptimized(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, Math.floor(steps / 2)); // Initialize arrays for previous and current steps let prev = Array(maxPosition + 1).fill(0); let curr = Array(maxPosition + 1).fill(0); // Base case: one way to be at position 0 after 0 steps prev[0] = 1; // Fill arrays for (let i = 1; i <= steps; i++) { // Reset current array curr = Array(maxPosition + 1).fill(0); for (let j = 0; j <= maxPosition; j++) { // Stay at position j curr[j] = prev[j]; // Move right from position j-1 if (j > 0) { curr[j] = (curr[j] + prev[j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { curr[j] = (curr[j] + prev[j + 1]) % MOD; } } // Swap arrays for next step [prev, curr] = [curr, prev]; } return prev[0];} // Test casesconsole.log(numWays(3, 2)); // 4console.log(numWays(2, 4)); // 2console.log(numWays(4, 2)); // 8 console.log(numWaysOptimized(3, 2)); // 4console.log(numWaysOptimized(2, 4)); // 2console.log(numWaysOptimized(4, 2)); // 8 console.log(numWaysFurtherOptimized(3, 2)); // 4console.log(numWaysFurtherOptimized(2, 4)); // 2console.log(numWaysFurtherOptimized(4, 2)); // 8
Determine the maximum position we need to consider, which is the minimum of arrLen - 1 and steps (or steps / 2 for further optimization).
Set up a dynamic programming array to keep track of the number of ways to be at each position after each step.
Define the base case: there is one way to be at position 0 after 0 steps.
For each step and position, calculate the number of ways by considering three possible moves: stay, move left, or move right.
Return the value in the DP array that represents the number of ways to be at position 0 after the given number of steps.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the number of ways to stay in the same place after some steps problem using a different approach than shown above.
Handle the case where both steps and arrLen are small.
Handle the case where arrLen is much larger than steps.
Handle the case where steps is at its maximum value.
Below is the implementation of the number of ways to stay in the same place after some steps:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149/** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming (2D) approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWays(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, steps); // Initialize DP array const dp = Array(steps + 1).fill().map(() => Array(maxPosition + 1).fill(0)); // Base case: one way to be at position 0 after 0 steps dp[0][0] = 1; // Fill DP array for (let i = 1; i <= steps; i++) { for (let j = 0; j <= maxPosition; j++) { // Stay at position j dp[i][j] = dp[i - 1][j]; // Move right from position j-1 if (j > 0) { dp[i][j] = (dp[i][j] + dp[i - 1][j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { dp[i][j] = (dp[i][j] + dp[i - 1][j + 1]) % MOD; } } } return dp[steps][0];} /** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming (1D) approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWaysOptimized(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, steps); // Initialize arrays for previous and current steps let prev = Array(maxPosition + 1).fill(0); let curr = Array(maxPosition + 1).fill(0); // Base case: one way to be at position 0 after 0 steps prev[0] = 1; // Fill arrays for (let i = 1; i <= steps; i++) { // Reset current array curr = Array(maxPosition + 1).fill(0); for (let j = 0; j <= maxPosition; j++) { // Stay at position j curr[j] = prev[j]; // Move right from position j-1 if (j > 0) { curr[j] = (curr[j] + prev[j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { curr[j] = (curr[j] + prev[j + 1]) % MOD; } } // Swap arrays for next step [prev, curr] = [curr, prev]; } return prev[0];} /** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming with Further Optimization approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWaysFurtherOptimized(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, Math.floor(steps / 2)); // Initialize arrays for previous and current steps let prev = Array(maxPosition + 1).fill(0); let curr = Array(maxPosition + 1).fill(0); // Base case: one way to be at position 0 after 0 steps prev[0] = 1; // Fill arrays for (let i = 1; i <= steps; i++) { // Reset current array curr = Array(maxPosition + 1).fill(0); for (let j = 0; j <= maxPosition; j++) { // Stay at position j curr[j] = prev[j]; // Move right from position j-1 if (j > 0) { curr[j] = (curr[j] + prev[j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { curr[j] = (curr[j] + prev[j + 1]) % MOD; } } // Swap arrays for next step [prev, curr] = [curr, prev]; } return prev[0];} // Test casesconsole.log(numWays(3, 2)); // 4console.log(numWays(2, 4)); // 2console.log(numWays(4, 2)); // 8 console.log(numWaysOptimized(3, 2)); // 4console.log(numWaysOptimized(2, 4)); // 2console.log(numWaysOptimized(4, 2)); // 8 console.log(numWaysFurtherOptimized(3, 2)); // 4console.log(numWaysFurtherOptimized(2, 4)); // 2console.log(numWaysFurtherOptimized(4, 2)); // 8
Let's break down the implementation:
Implement the number of ways to stay in the same place after some steps solution in different programming languages.
Below is the implementation of the number of ways to stay in the same place after some steps in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149/** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming (2D) approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWays(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, steps); // Initialize DP array const dp = Array(steps + 1).fill().map(() => Array(maxPosition + 1).fill(0)); // Base case: one way to be at position 0 after 0 steps dp[0][0] = 1; // Fill DP array for (let i = 1; i <= steps; i++) { for (let j = 0; j <= maxPosition; j++) { // Stay at position j dp[i][j] = dp[i - 1][j]; // Move right from position j-1 if (j > 0) { dp[i][j] = (dp[i][j] + dp[i - 1][j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { dp[i][j] = (dp[i][j] + dp[i - 1][j + 1]) % MOD; } } } return dp[steps][0];} /** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming (1D) approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWaysOptimized(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, steps); // Initialize arrays for previous and current steps let prev = Array(maxPosition + 1).fill(0); let curr = Array(maxPosition + 1).fill(0); // Base case: one way to be at position 0 after 0 steps prev[0] = 1; // Fill arrays for (let i = 1; i <= steps; i++) { // Reset current array curr = Array(maxPosition + 1).fill(0); for (let j = 0; j <= maxPosition; j++) { // Stay at position j curr[j] = prev[j]; // Move right from position j-1 if (j > 0) { curr[j] = (curr[j] + prev[j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { curr[j] = (curr[j] + prev[j + 1]) % MOD; } } // Swap arrays for next step [prev, curr] = [curr, prev]; } return prev[0];} /** * Calculate the number of ways to stay at index 0 after exactly steps steps. * Dynamic Programming with Further Optimization approach. * * @param {number} steps - Number of steps * @param {number} arrLen - Length of the array * @return {number} - Number of ways */function numWaysFurtherOptimized(steps, arrLen) { const MOD = 1000000007; // Define the maximum position we need to consider const maxPosition = Math.min(arrLen - 1, Math.floor(steps / 2)); // Initialize arrays for previous and current steps let prev = Array(maxPosition + 1).fill(0); let curr = Array(maxPosition + 1).fill(0); // Base case: one way to be at position 0 after 0 steps prev[0] = 1; // Fill arrays for (let i = 1; i <= steps; i++) { // Reset current array curr = Array(maxPosition + 1).fill(0); for (let j = 0; j <= maxPosition; j++) { // Stay at position j curr[j] = prev[j]; // Move right from position j-1 if (j > 0) { curr[j] = (curr[j] + prev[j - 1]) % MOD; } // Move left from position j+1 if (j < maxPosition) { curr[j] = (curr[j] + prev[j + 1]) % MOD; } } // Swap arrays for next step [prev, curr] = [curr, prev]; } return prev[0];} // Test casesconsole.log(numWays(3, 2)); // 4console.log(numWays(2, 4)); // 2console.log(numWays(4, 2)); // 8 console.log(numWaysOptimized(3, 2)); // 4console.log(numWaysOptimized(2, 4)); // 2console.log(numWaysOptimized(4, 2)); // 8 console.log(numWaysFurtherOptimized(3, 2)); // 4console.log(numWaysFurtherOptimized(2, 4)); // 2console.log(numWaysFurtherOptimized(4, 2)); // 8
Determine the maximum position we need to consider, which is the minimum of arrLen - 1 and steps (or steps / 2 for further optimization).
Set up a dynamic programming array to keep track of the number of ways to be at each position after each step.
Define the base case: there is one way to be at position 0 after 0 steps.
For each step and position, calculate the number of ways by considering three possible moves: stay, move left, or move right.
Return the value in the DP array that represents the number of ways to be at position 0 after the given number of steps.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the number of ways to stay in the same place after some steps problem using a different approach than shown above.
Handle the case where both steps and arrLen are small.
Handle the case where arrLen is much larger than steps.
Handle the case where steps is at its maximum value.