Below is the implementation of the shift scheduler:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081// Recursive Backtracking Approachfunction generatePermutations(baristas) { const result = []; backtrack(baristas, [], result); return result;} function backtrack(available, current, result) { // Base case: all baristas have been used if (available.length === 0) { result.push([...current]); return; } // Try each available barista in the current position for (let i = 0; i < available.length; i++) { // Choose the barista const barista = available[i]; available.splice(i, 1); current.push(barista); // Recursively generate permutations for the remaining baristas backtrack(available, current, result); // Backtrack: undo the choice current.pop(); available.splice(i, 0, barista); }} // Heap's Algorithmfunction generatePermutationsHeap(baristas) { const result = []; heapPermute([...baristas], baristas.length, result); return result;} function heapPermute(baristas, size, result) { // Base case: size is 1, add the current permutation to the result if (size === 1) { result.push([...baristas]); return; } for (let i = 0; i < size; i++) { // Recursively generate permutations with size-1 heapPermute(baristas, size - 1, result); // If size is odd, swap first and last element if (size % 2 === 1) { [baristas[0], baristas[size - 1]] = [baristas[size - 1], baristas[0]]; } // If size is even, swap i-th and last element else { [baristas[i], baristas[size - 1]] = [baristas[size - 1], baristas[i]]; } }} // Test casesconst baristas1 = ['Ana', 'Bob', 'Carlos'];console.log("Baristas:", baristas1); console.log("\nPermutations (Backtracking):");const permutations1 = generatePermutations([...baristas1]);permutations1.forEach(perm => console.log(perm.join(', '))); console.log("\nPermutations (Heap's Algorithm):");const permutations2 = generatePermutationsHeap([...baristas1]);permutations2.forEach(perm => console.log(perm.join(', '))); const baristas2 = ['Dana', 'Eli'];console.log("\nBaristas:", baristas2); console.log("\nPermutations (Backtracking):");const permutations3 = generatePermutations([...baristas2]);permutations3.forEach(perm => console.log(perm.join(', '))); console.log("\nPermutations (Heap's Algorithm):");const permutations4 = generatePermutationsHeap([...baristas2]);permutations4.forEach(perm => console.log(perm.join(', ')));
Let's break down the implementation:
Implement the shift scheduler solution in different programming languages.
Below is the implementation of the shift scheduler in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081// Recursive Backtracking Approachfunction generatePermutations(baristas) { const result = []; backtrack(baristas, [], result); return result;} function backtrack(available, current, result) { // Base case: all baristas have been used if (available.length === 0) { result.push([...current]); return; } // Try each available barista in the current position for (let i = 0; i < available.length; i++) { // Choose the barista const barista = available[i]; available.splice(i, 1); current.push(barista); // Recursively generate permutations for the remaining baristas backtrack(available, current, result); // Backtrack: undo the choice current.pop(); available.splice(i, 0, barista); }} // Heap's Algorithmfunction generatePermutationsHeap(baristas) { const result = []; heapPermute([...baristas], baristas.length, result); return result;} function heapPermute(baristas, size, result) { // Base case: size is 1, add the current permutation to the result if (size === 1) { result.push([...baristas]); return; } for (let i = 0; i < size; i++) { // Recursively generate permutations with size-1 heapPermute(baristas, size - 1, result); // If size is odd, swap first and last element if (size % 2 === 1) { [baristas[0], baristas[size - 1]] = [baristas[size - 1], baristas[0]]; } // If size is even, swap i-th and last element else { [baristas[i], baristas[size - 1]] = [baristas[size - 1], baristas[i]]; } }} // Test casesconst baristas1 = ['Ana', 'Bob', 'Carlos'];console.log("Baristas:", baristas1); console.log("\nPermutations (Backtracking):");const permutations1 = generatePermutations([...baristas1]);permutations1.forEach(perm => console.log(perm.join(', '))); console.log("\nPermutations (Heap's Algorithm):");const permutations2 = generatePermutationsHeap([...baristas1]);permutations2.forEach(perm => console.log(perm.join(', '))); const baristas2 = ['Dana', 'Eli'];console.log("\nBaristas:", baristas2); console.log("\nPermutations (Backtracking):");const permutations3 = generatePermutations([...baristas2]);permutations3.forEach(perm => console.log(perm.join(', '))); console.log("\nPermutations (Heap's Algorithm):");const permutations4 = generatePermutationsHeap([...baristas2]);permutations4.forEach(perm => console.log(perm.join(', ')));
We need to generate all possible arrangements (permutations) of a given set of barista names.
Recognize that this is a classic Ordering Pattern problem where we recursively place each available barista in the current position and then find all permutations of the remaining baristas.
The base case is when all baristas have been used (the available list is empty), at which point we add the current permutation to the result.
Write a function that handles the base case and recursively explores all possible arrangements, using backtracking to undo choices and try different options.
Implement Heap's Algorithm, which is more efficient in practice because it minimizes the number of swaps needed to generate all permutations.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the shift scheduler problem using a different approach than shown above.
If the input array is empty, the result should be an array containing one empty permutation.
If the input array has only one element, the result should be an array containing that single element.
Be cautious with large inputs, as the number of permutations grows factorially. For n = 8, there are 40,320 permutations!
Below is the implementation of the shift scheduler:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081// Recursive Backtracking Approachfunction generatePermutations(baristas) { const result = []; backtrack(baristas, [], result); return result;} function backtrack(available, current, result) { // Base case: all baristas have been used if (available.length === 0) { result.push([...current]); return; } // Try each available barista in the current position for (let i = 0; i < available.length; i++) { // Choose the barista const barista = available[i]; available.splice(i, 1); current.push(barista); // Recursively generate permutations for the remaining baristas backtrack(available, current, result); // Backtrack: undo the choice current.pop(); available.splice(i, 0, barista); }} // Heap's Algorithmfunction generatePermutationsHeap(baristas) { const result = []; heapPermute([...baristas], baristas.length, result); return result;} function heapPermute(baristas, size, result) { // Base case: size is 1, add the current permutation to the result if (size === 1) { result.push([...baristas]); return; } for (let i = 0; i < size; i++) { // Recursively generate permutations with size-1 heapPermute(baristas, size - 1, result); // If size is odd, swap first and last element if (size % 2 === 1) { [baristas[0], baristas[size - 1]] = [baristas[size - 1], baristas[0]]; } // If size is even, swap i-th and last element else { [baristas[i], baristas[size - 1]] = [baristas[size - 1], baristas[i]]; } }} // Test casesconst baristas1 = ['Ana', 'Bob', 'Carlos'];console.log("Baristas:", baristas1); console.log("\nPermutations (Backtracking):");const permutations1 = generatePermutations([...baristas1]);permutations1.forEach(perm => console.log(perm.join(', '))); console.log("\nPermutations (Heap's Algorithm):");const permutations2 = generatePermutationsHeap([...baristas1]);permutations2.forEach(perm => console.log(perm.join(', '))); const baristas2 = ['Dana', 'Eli'];console.log("\nBaristas:", baristas2); console.log("\nPermutations (Backtracking):");const permutations3 = generatePermutations([...baristas2]);permutations3.forEach(perm => console.log(perm.join(', '))); console.log("\nPermutations (Heap's Algorithm):");const permutations4 = generatePermutationsHeap([...baristas2]);permutations4.forEach(perm => console.log(perm.join(', ')));
Let's break down the implementation:
Implement the shift scheduler solution in different programming languages.
Below is the implementation of the shift scheduler in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081// Recursive Backtracking Approachfunction generatePermutations(baristas) { const result = []; backtrack(baristas, [], result); return result;} function backtrack(available, current, result) { // Base case: all baristas have been used if (available.length === 0) { result.push([...current]); return; } // Try each available barista in the current position for (let i = 0; i < available.length; i++) { // Choose the barista const barista = available[i]; available.splice(i, 1); current.push(barista); // Recursively generate permutations for the remaining baristas backtrack(available, current, result); // Backtrack: undo the choice current.pop(); available.splice(i, 0, barista); }} // Heap's Algorithmfunction generatePermutationsHeap(baristas) { const result = []; heapPermute([...baristas], baristas.length, result); return result;} function heapPermute(baristas, size, result) { // Base case: size is 1, add the current permutation to the result if (size === 1) { result.push([...baristas]); return; } for (let i = 0; i < size; i++) { // Recursively generate permutations with size-1 heapPermute(baristas, size - 1, result); // If size is odd, swap first and last element if (size % 2 === 1) { [baristas[0], baristas[size - 1]] = [baristas[size - 1], baristas[0]]; } // If size is even, swap i-th and last element else { [baristas[i], baristas[size - 1]] = [baristas[size - 1], baristas[i]]; } }} // Test casesconst baristas1 = ['Ana', 'Bob', 'Carlos'];console.log("Baristas:", baristas1); console.log("\nPermutations (Backtracking):");const permutations1 = generatePermutations([...baristas1]);permutations1.forEach(perm => console.log(perm.join(', '))); console.log("\nPermutations (Heap's Algorithm):");const permutations2 = generatePermutationsHeap([...baristas1]);permutations2.forEach(perm => console.log(perm.join(', '))); const baristas2 = ['Dana', 'Eli'];console.log("\nBaristas:", baristas2); console.log("\nPermutations (Backtracking):");const permutations3 = generatePermutations([...baristas2]);permutations3.forEach(perm => console.log(perm.join(', '))); console.log("\nPermutations (Heap's Algorithm):");const permutations4 = generatePermutationsHeap([...baristas2]);permutations4.forEach(perm => console.log(perm.join(', ')));
We need to generate all possible arrangements (permutations) of a given set of barista names.
Recognize that this is a classic Ordering Pattern problem where we recursively place each available barista in the current position and then find all permutations of the remaining baristas.
The base case is when all baristas have been used (the available list is empty), at which point we add the current permutation to the result.
Write a function that handles the base case and recursively explores all possible arrangements, using backtracking to undo choices and try different options.
Implement Heap's Algorithm, which is more efficient in practice because it minimizes the number of swaps needed to generate all permutations.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the shift scheduler problem using a different approach than shown above.
If the input array is empty, the result should be an array containing one empty permutation.
If the input array has only one element, the result should be an array containing that single element.
Be cautious with large inputs, as the number of permutations grows factorially. For n = 8, there are 40,320 permutations!