Below is the implementation of the soup servings:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127/** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Dynamic Programming with Memoization approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServings(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Scale down the problem by dividing n by 25 n = Math.ceil(n / 25); // Initialize memoization map const memo = new Map(); // Define recursive function function calculateProbability(a, b) { // Base cases if (a <= 0 && b <= 0) { return 0.5; // Both soups become empty at the same time } if (a <= 0) { return 1.0; // Soup A becomes empty first } if (b <= 0) { return 0.0; // Soup B becomes empty first } // Create a unique key for the memo map const key = a + ',' + b; // If we've already computed this subproblem, return the cached result if (memo.has(key)) { return memo.get(key); } // Calculate the probability for the current state const result = 0.25 * ( calculateProbability(a - 4, b) + // Serve 100 ml of A, 0 ml of B calculateProbability(a - 3, b - 1) + // Serve 75 ml of A, 25 ml of B calculateProbability(a - 2, b - 2) + // Serve 50 ml of A, 50 ml of B calculateProbability(a - 1, b - 3) // Serve 25 ml of A, 75 ml of B ); // Cache the result memo.set(key, result); return result; } return calculateProbability(n, n);} /** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Iterative Dynamic Programming approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServingsIterative(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Scale down the problem by dividing n by 25 n = Math.ceil(n / 25); // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0)); // Set base cases dp[0][0] = 0.5; // Both soups become empty at the same time for (let i = 1; i <= n; i++) { dp[0][i] = 1.0; // Soup A becomes empty first dp[i][0] = 0.0; // Soup B becomes empty first } // Fill DP array for (let a = 1; a <= n; a++) { for (let b = 1; b <= n; b++) { dp[a][b] = 0.25 * ( dp[Math.max(0, a - 4)][b] + // Serve 100 ml of A, 0 ml of B dp[Math.max(0, a - 3)][Math.max(0, b - 1)] + // Serve 75 ml of A, 25 ml of B dp[Math.max(0, a - 2)][Math.max(0, b - 2)] + // Serve 50 ml of A, 50 ml of B dp[Math.max(0, a - 1)][Math.max(0, b - 3)] // Serve 25 ml of A, 75 ml of B ); } } return dp[n][n];} /** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Mathematical Insight approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServingsMathematical(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Use the recursive approach for smaller values of n return soupServings(n);} // Test casesconsole.log(soupServings(50)); // 0.625console.log(soupServings(100)); // 0.71875 console.log(soupServingsIterative(50)); // 0.625console.log(soupServingsIterative(100)); // 0.71875 console.log(soupServingsMathematical(50)); // 0.625console.log(soupServingsMathematical(100)); // 0.71875console.log(soupServingsMathematical(5000)); // 1.0
Let's break down the implementation:
Implement the soup servings solution in different programming languages.
Below is the implementation of the soup servings in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127/** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Dynamic Programming with Memoization approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServings(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Scale down the problem by dividing n by 25 n = Math.ceil(n / 25); // Initialize memoization map const memo = new Map(); // Define recursive function function calculateProbability(a, b) { // Base cases if (a <= 0 && b <= 0) { return 0.5; // Both soups become empty at the same time } if (a <= 0) { return 1.0; // Soup A becomes empty first } if (b <= 0) { return 0.0; // Soup B becomes empty first } // Create a unique key for the memo map const key = a + ',' + b; // If we've already computed this subproblem, return the cached result if (memo.has(key)) { return memo.get(key); } // Calculate the probability for the current state const result = 0.25 * ( calculateProbability(a - 4, b) + // Serve 100 ml of A, 0 ml of B calculateProbability(a - 3, b - 1) + // Serve 75 ml of A, 25 ml of B calculateProbability(a - 2, b - 2) + // Serve 50 ml of A, 50 ml of B calculateProbability(a - 1, b - 3) // Serve 25 ml of A, 75 ml of B ); // Cache the result memo.set(key, result); return result; } return calculateProbability(n, n);} /** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Iterative Dynamic Programming approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServingsIterative(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Scale down the problem by dividing n by 25 n = Math.ceil(n / 25); // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0)); // Set base cases dp[0][0] = 0.5; // Both soups become empty at the same time for (let i = 1; i <= n; i++) { dp[0][i] = 1.0; // Soup A becomes empty first dp[i][0] = 0.0; // Soup B becomes empty first } // Fill DP array for (let a = 1; a <= n; a++) { for (let b = 1; b <= n; b++) { dp[a][b] = 0.25 * ( dp[Math.max(0, a - 4)][b] + // Serve 100 ml of A, 0 ml of B dp[Math.max(0, a - 3)][Math.max(0, b - 1)] + // Serve 75 ml of A, 25 ml of B dp[Math.max(0, a - 2)][Math.max(0, b - 2)] + // Serve 50 ml of A, 50 ml of B dp[Math.max(0, a - 1)][Math.max(0, b - 3)] // Serve 25 ml of A, 75 ml of B ); } } return dp[n][n];} /** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Mathematical Insight approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServingsMathematical(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Use the recursive approach for smaller values of n return soupServings(n);} // Test casesconsole.log(soupServings(50)); // 0.625console.log(soupServings(100)); // 0.71875 console.log(soupServingsIterative(50)); // 0.625console.log(soupServingsIterative(100)); // 0.71875 console.log(soupServingsMathematical(50)); // 0.625console.log(soupServingsMathematical(100)); // 0.71875console.log(soupServingsMathematical(5000)); // 1.0
For large values of n (> 4800), return 1.0 directly, as the probability approaches 1.
Divide n by 25 and round up to simplify calculations and reduce the number of recursive calls.
Set the base cases: 0.5 if both soups become empty at the same time, 1.0 if soup A becomes empty first, and 0.0 if soup B becomes empty first.
For each state (a, b), calculate the probability by considering all four operations with equal probability (0.25 each).
Use memoization to avoid redundant calculations and improve performance.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the soup servings problem using a different approach than shown above.
Handle the case where n = 0 (both soups are initially empty).
Handle small values of n correctly, where the probability is not close to 1.
Optimize for large values of n by returning 1.0 directly.
Below is the implementation of the soup servings:
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127/** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Dynamic Programming with Memoization approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServings(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Scale down the problem by dividing n by 25 n = Math.ceil(n / 25); // Initialize memoization map const memo = new Map(); // Define recursive function function calculateProbability(a, b) { // Base cases if (a <= 0 && b <= 0) { return 0.5; // Both soups become empty at the same time } if (a <= 0) { return 1.0; // Soup A becomes empty first } if (b <= 0) { return 0.0; // Soup B becomes empty first } // Create a unique key for the memo map const key = a + ',' + b; // If we've already computed this subproblem, return the cached result if (memo.has(key)) { return memo.get(key); } // Calculate the probability for the current state const result = 0.25 * ( calculateProbability(a - 4, b) + // Serve 100 ml of A, 0 ml of B calculateProbability(a - 3, b - 1) + // Serve 75 ml of A, 25 ml of B calculateProbability(a - 2, b - 2) + // Serve 50 ml of A, 50 ml of B calculateProbability(a - 1, b - 3) // Serve 25 ml of A, 75 ml of B ); // Cache the result memo.set(key, result); return result; } return calculateProbability(n, n);} /** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Iterative Dynamic Programming approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServingsIterative(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Scale down the problem by dividing n by 25 n = Math.ceil(n / 25); // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0)); // Set base cases dp[0][0] = 0.5; // Both soups become empty at the same time for (let i = 1; i <= n; i++) { dp[0][i] = 1.0; // Soup A becomes empty first dp[i][0] = 0.0; // Soup B becomes empty first } // Fill DP array for (let a = 1; a <= n; a++) { for (let b = 1; b <= n; b++) { dp[a][b] = 0.25 * ( dp[Math.max(0, a - 4)][b] + // Serve 100 ml of A, 0 ml of B dp[Math.max(0, a - 3)][Math.max(0, b - 1)] + // Serve 75 ml of A, 25 ml of B dp[Math.max(0, a - 2)][Math.max(0, b - 2)] + // Serve 50 ml of A, 50 ml of B dp[Math.max(0, a - 1)][Math.max(0, b - 3)] // Serve 25 ml of A, 75 ml of B ); } } return dp[n][n];} /** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Mathematical Insight approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServingsMathematical(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Use the recursive approach for smaller values of n return soupServings(n);} // Test casesconsole.log(soupServings(50)); // 0.625console.log(soupServings(100)); // 0.71875 console.log(soupServingsIterative(50)); // 0.625console.log(soupServingsIterative(100)); // 0.71875 console.log(soupServingsMathematical(50)); // 0.625console.log(soupServingsMathematical(100)); // 0.71875console.log(soupServingsMathematical(5000)); // 1.0
Let's break down the implementation:
Implement the soup servings solution in different programming languages.
Below is the implementation of the soup servings in different programming languages. Select a language tab to view the corresponding code.
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127/** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Dynamic Programming with Memoization approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServings(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Scale down the problem by dividing n by 25 n = Math.ceil(n / 25); // Initialize memoization map const memo = new Map(); // Define recursive function function calculateProbability(a, b) { // Base cases if (a <= 0 && b <= 0) { return 0.5; // Both soups become empty at the same time } if (a <= 0) { return 1.0; // Soup A becomes empty first } if (b <= 0) { return 0.0; // Soup B becomes empty first } // Create a unique key for the memo map const key = a + ',' + b; // If we've already computed this subproblem, return the cached result if (memo.has(key)) { return memo.get(key); } // Calculate the probability for the current state const result = 0.25 * ( calculateProbability(a - 4, b) + // Serve 100 ml of A, 0 ml of B calculateProbability(a - 3, b - 1) + // Serve 75 ml of A, 25 ml of B calculateProbability(a - 2, b - 2) + // Serve 50 ml of A, 50 ml of B calculateProbability(a - 1, b - 3) // Serve 25 ml of A, 75 ml of B ); // Cache the result memo.set(key, result); return result; } return calculateProbability(n, n);} /** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Iterative Dynamic Programming approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServingsIterative(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Scale down the problem by dividing n by 25 n = Math.ceil(n / 25); // Initialize DP array const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0)); // Set base cases dp[0][0] = 0.5; // Both soups become empty at the same time for (let i = 1; i <= n; i++) { dp[0][i] = 1.0; // Soup A becomes empty first dp[i][0] = 0.0; // Soup B becomes empty first } // Fill DP array for (let a = 1; a <= n; a++) { for (let b = 1; b <= n; b++) { dp[a][b] = 0.25 * ( dp[Math.max(0, a - 4)][b] + // Serve 100 ml of A, 0 ml of B dp[Math.max(0, a - 3)][Math.max(0, b - 1)] + // Serve 75 ml of A, 25 ml of B dp[Math.max(0, a - 2)][Math.max(0, b - 2)] + // Serve 50 ml of A, 50 ml of B dp[Math.max(0, a - 1)][Math.max(0, b - 3)] // Serve 25 ml of A, 75 ml of B ); } } return dp[n][n];} /** * Calculate the probability that soup A will be empty first, plus half the probability * that A and B become empty at the same time. * Mathematical Insight approach. * * @param {number} n - Initial amount of soup A and B in ml * @return {number} - Probability */function soupServingsMathematical(n) { // For large values of n, the probability approaches 1 if (n > 4800) { return 1.0; } // Use the recursive approach for smaller values of n return soupServings(n);} // Test casesconsole.log(soupServings(50)); // 0.625console.log(soupServings(100)); // 0.71875 console.log(soupServingsIterative(50)); // 0.625console.log(soupServingsIterative(100)); // 0.71875 console.log(soupServingsMathematical(50)); // 0.625console.log(soupServingsMathematical(100)); // 0.71875console.log(soupServingsMathematical(5000)); // 1.0
For large values of n (> 4800), return 1.0 directly, as the probability approaches 1.
Divide n by 25 and round up to simplify calculations and reduce the number of recursive calls.
Set the base cases: 0.5 if both soups become empty at the same time, 1.0 if soup A becomes empty first, and 0.0 if soup B becomes empty first.
For each state (a, b), calculate the probability by considering all four operations with equal probability (0.25 each).
Use memoization to avoid redundant calculations and improve performance.
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the soup servings problem using a different approach than shown above.
Handle the case where n = 0 (both soups are initially empty).
Handle small values of n correctly, where the probability is not close to 1.
Optimize for large values of n by returning 1.0 directly.