101 Logo
onenoughtone

Code Implementation

Soup Servings Implementation

Below is the implementation of the soup servings:

solution.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/**
* Calculate the probability that soup A will be empty first, plus half the probability
* that A and B become empty at the same time.
* Dynamic Programming with Memoization approach.
*
* @param {number} n - Initial amount of soup A and B in ml
* @return {number} - Probability
*/
function soupServings(n) {
// For large values of n, the probability approaches 1
if (n > 4800) {
return 1.0;
}
// Scale down the problem by dividing n by 25
n = Math.ceil(n / 25);
// Initialize memoization map
const memo = new Map();
// Define recursive function
function calculateProbability(a, b) {
// Base cases
if (a <= 0 && b <= 0) {
return 0.5; // Both soups become empty at the same time
}
if (a <= 0) {
return 1.0; // Soup A becomes empty first
}
if (b <= 0) {
return 0.0; // Soup B becomes empty first
}
// Create a unique key for the memo map
const key = a + ',' + b;
// If we've already computed this subproblem, return the cached result
if (memo.has(key)) {
return memo.get(key);
}
// Calculate the probability for the current state
const result = 0.25 * (
calculateProbability(a - 4, b) + // Serve 100 ml of A, 0 ml of B
calculateProbability(a - 3, b - 1) + // Serve 75 ml of A, 25 ml of B
calculateProbability(a - 2, b - 2) + // Serve 50 ml of A, 50 ml of B
calculateProbability(a - 1, b - 3) // Serve 25 ml of A, 75 ml of B
);
// Cache the result
memo.set(key, result);
return result;
}
return calculateProbability(n, n);
}
/**
* Calculate the probability that soup A will be empty first, plus half the probability
* that A and B become empty at the same time.
* Iterative Dynamic Programming approach.
*
* @param {number} n - Initial amount of soup A and B in ml
* @return {number} - Probability
*/
function soupServingsIterative(n) {
// For large values of n, the probability approaches 1
if (n > 4800) {
return 1.0;
}
// Scale down the problem by dividing n by 25
n = Math.ceil(n / 25);
// Initialize DP array
const dp = Array(n + 1).fill().map(() => Array(n + 1).fill(0));
// Set base cases
dp[0][0] = 0.5; // Both soups become empty at the same time
for (let i = 1; i <= n; i++) {
dp[0][i] = 1.0; // Soup A becomes empty first
dp[i][0] = 0.0; // Soup B becomes empty first
}
// Fill DP array
for (let a = 1; a <= n; a++) {
for (let b = 1; b <= n; b++) {
dp[a][b] = 0.25 * (
dp[Math.max(0, a - 4)][b] + // Serve 100 ml of A, 0 ml of B
dp[Math.max(0, a - 3)][Math.max(0, b - 1)] + // Serve 75 ml of A, 25 ml of B
dp[Math.max(0, a - 2)][Math.max(0, b - 2)] + // Serve 50 ml of A, 50 ml of B
dp[Math.max(0, a - 1)][Math.max(0, b - 3)] // Serve 25 ml of A, 75 ml of B
);
}
}
return dp[n][n];
}
/**
* Calculate the probability that soup A will be empty first, plus half the probability
* that A and B become empty at the same time.
* Mathematical Insight approach.
*
* @param {number} n - Initial amount of soup A and B in ml
* @return {number} - Probability
*/
function soupServingsMathematical(n) {
// For large values of n, the probability approaches 1
if (n > 4800) {
return 1.0;
}
// Use the recursive approach for smaller values of n
return soupServings(n);
}
// Test cases
console.log(soupServings(50)); // 0.625
console.log(soupServings(100)); // 0.71875
console.log(soupServingsIterative(50)); // 0.625
console.log(soupServingsIterative(100)); // 0.71875
console.log(soupServingsMathematical(50)); // 0.625
console.log(soupServingsMathematical(100)); // 0.71875
console.log(soupServingsMathematical(5000)); // 1.0

Step-by-Step Explanation

Let's break down the implementation:

  1. Handle Large Inputs: For large values of n (> 4800), return 1.0 directly, as the probability approaches 1.
  2. Scale Down the Problem: Divide n by 25 and round up to simplify calculations and reduce the number of recursive calls.
  3. Define Base Cases: Set the base cases: 0.5 if both soups become empty at the same time, 1.0 if soup A becomes empty first, and 0.0 if soup B becomes empty first.
  4. Calculate Probabilities: For each state (a, b), calculate the probability by considering all four operations with equal probability (0.25 each).
  5. Use Memoization: Use memoization to avoid redundant calculations and improve performance.
ProblemSolutionCode
101 Logo
onenoughtone