Below is the implementation of the 2 keys keyboard:
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586/** * Find the minimum number of operations to get n 'A's. * Dynamic Programming approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minSteps(n) { // Initialize dp array const dp = new Array(n + 1).fill(Infinity); dp[1] = 0; // We start with one 'A' for (let i = 2; i <= n; i++) { for (let j = 1; j < i; j++) { if (i % j === 0) { dp[i] = Math.min(dp[i], dp[j] + (i / j)); } } } return dp[n];} /** * Find the minimum number of operations to get n 'A's. * Prime Factorization approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minStepsPrimeFactorization(n) { let result = 0; for (let i = 2; i * i <= n; i++) { while (n % i === 0) { result += i; n /= i; } } if (n > 1) { result += n; } return result;} /** * Find the minimum number of operations to get n 'A's. * Optimized Dynamic Programming approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minStepsOptimized(n) { // Initialize dp array const dp = new Array(n + 1).fill(Infinity); dp[1] = 0; // We start with one 'A' for (let i = 2; i <= n; i++) { for (let j = 1; j * j <= i; j++) { if (i % j === 0) { dp[i] = Math.min(dp[i], dp[j] + (i / j)); if (j !== i / j) { dp[i] = Math.min(dp[i], dp[i / j] + j); } } } } return dp[n];} // Test casesconsole.log(minSteps(3)); // 3console.log(minSteps(1)); // 0console.log(minSteps(6)); // 5 console.log(minStepsPrimeFactorization(3)); // 3console.log(minStepsPrimeFactorization(1)); // 0console.log(minStepsPrimeFactorization(6)); // 5 console.log(minStepsOptimized(3)); // 3console.log(minStepsOptimized(1)); // 0console.log(minStepsOptimized(6)); // 5
Let's break down the implementation:
Implement the 2 keys keyboard solution in different programming languages.
Below is the implementation of the 2 keys keyboard in different programming languages. Select a language tab to view the corresponding code.
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586/** * Find the minimum number of operations to get n 'A's. * Dynamic Programming approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minSteps(n) { // Initialize dp array const dp = new Array(n + 1).fill(Infinity); dp[1] = 0; // We start with one 'A' for (let i = 2; i <= n; i++) { for (let j = 1; j < i; j++) { if (i % j === 0) { dp[i] = Math.min(dp[i], dp[j] + (i / j)); } } } return dp[n];} /** * Find the minimum number of operations to get n 'A's. * Prime Factorization approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minStepsPrimeFactorization(n) { let result = 0; for (let i = 2; i * i <= n; i++) { while (n % i === 0) { result += i; n /= i; } } if (n > 1) { result += n; } return result;} /** * Find the minimum number of operations to get n 'A's. * Optimized Dynamic Programming approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minStepsOptimized(n) { // Initialize dp array const dp = new Array(n + 1).fill(Infinity); dp[1] = 0; // We start with one 'A' for (let i = 2; i <= n; i++) { for (let j = 1; j * j <= i; j++) { if (i % j === 0) { dp[i] = Math.min(dp[i], dp[j] + (i / j)); if (j !== i / j) { dp[i] = Math.min(dp[i], dp[i / j] + j); } } } } return dp[n];} // Test casesconsole.log(minSteps(3)); // 3console.log(minSteps(1)); // 0console.log(minSteps(6)); // 5 console.log(minStepsPrimeFactorization(3)); // 3console.log(minStepsPrimeFactorization(1)); // 0console.log(minStepsPrimeFactorization(6)); // 5 console.log(minStepsOptimized(3)); // 3console.log(minStepsOptimized(1)); // 0console.log(minStepsOptimized(6)); // 5
First, understand that we need to find the minimum number of operations (copy all and paste) to get exactly n 'A's on the screen.
Define the state dp[i] as the minimum number of operations to get i 'A's on the screen.
For each i, consider all possible ways to reach i 'A's by copying and pasting from a smaller number of 'A's.
Optimize the solution by only considering the divisors of i when calculating dp[i], or by using the prime factorization approach.
Handle edge cases such as n = 1 (return 0, as we already have one 'A' on the screen).
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the 2 keys keyboard problem using a different approach than shown above.
Handle the case where n = 1 (return 0, as we already have one 'A' on the screen).
Handle the case where n is a prime number (the minimum number of operations is n).
Handle the case where n is a composite number (the minimum number of operations is the sum of its prime factors).
Below is the implementation of the 2 keys keyboard:
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586/** * Find the minimum number of operations to get n 'A's. * Dynamic Programming approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minSteps(n) { // Initialize dp array const dp = new Array(n + 1).fill(Infinity); dp[1] = 0; // We start with one 'A' for (let i = 2; i <= n; i++) { for (let j = 1; j < i; j++) { if (i % j === 0) { dp[i] = Math.min(dp[i], dp[j] + (i / j)); } } } return dp[n];} /** * Find the minimum number of operations to get n 'A's. * Prime Factorization approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minStepsPrimeFactorization(n) { let result = 0; for (let i = 2; i * i <= n; i++) { while (n % i === 0) { result += i; n /= i; } } if (n > 1) { result += n; } return result;} /** * Find the minimum number of operations to get n 'A's. * Optimized Dynamic Programming approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minStepsOptimized(n) { // Initialize dp array const dp = new Array(n + 1).fill(Infinity); dp[1] = 0; // We start with one 'A' for (let i = 2; i <= n; i++) { for (let j = 1; j * j <= i; j++) { if (i % j === 0) { dp[i] = Math.min(dp[i], dp[j] + (i / j)); if (j !== i / j) { dp[i] = Math.min(dp[i], dp[i / j] + j); } } } } return dp[n];} // Test casesconsole.log(minSteps(3)); // 3console.log(minSteps(1)); // 0console.log(minSteps(6)); // 5 console.log(minStepsPrimeFactorization(3)); // 3console.log(minStepsPrimeFactorization(1)); // 0console.log(minStepsPrimeFactorization(6)); // 5 console.log(minStepsOptimized(3)); // 3console.log(minStepsOptimized(1)); // 0console.log(minStepsOptimized(6)); // 5
Let's break down the implementation:
Implement the 2 keys keyboard solution in different programming languages.
Below is the implementation of the 2 keys keyboard in different programming languages. Select a language tab to view the corresponding code.
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586/** * Find the minimum number of operations to get n 'A's. * Dynamic Programming approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minSteps(n) { // Initialize dp array const dp = new Array(n + 1).fill(Infinity); dp[1] = 0; // We start with one 'A' for (let i = 2; i <= n; i++) { for (let j = 1; j < i; j++) { if (i % j === 0) { dp[i] = Math.min(dp[i], dp[j] + (i / j)); } } } return dp[n];} /** * Find the minimum number of operations to get n 'A's. * Prime Factorization approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minStepsPrimeFactorization(n) { let result = 0; for (let i = 2; i * i <= n; i++) { while (n % i === 0) { result += i; n /= i; } } if (n > 1) { result += n; } return result;} /** * Find the minimum number of operations to get n 'A's. * Optimized Dynamic Programming approach. * * @param {number} n - The target number of 'A's * @return {number} - The minimum number of operations */function minStepsOptimized(n) { // Initialize dp array const dp = new Array(n + 1).fill(Infinity); dp[1] = 0; // We start with one 'A' for (let i = 2; i <= n; i++) { for (let j = 1; j * j <= i; j++) { if (i % j === 0) { dp[i] = Math.min(dp[i], dp[j] + (i / j)); if (j !== i / j) { dp[i] = Math.min(dp[i], dp[i / j] + j); } } } } return dp[n];} // Test casesconsole.log(minSteps(3)); // 3console.log(minSteps(1)); // 0console.log(minSteps(6)); // 5 console.log(minStepsPrimeFactorization(3)); // 3console.log(minStepsPrimeFactorization(1)); // 0console.log(minStepsPrimeFactorization(6)); // 5 console.log(minStepsOptimized(3)); // 3console.log(minStepsOptimized(1)); // 0console.log(minStepsOptimized(6)); // 5
First, understand that we need to find the minimum number of operations (copy all and paste) to get exactly n 'A's on the screen.
Define the state dp[i] as the minimum number of operations to get i 'A's on the screen.
For each i, consider all possible ways to reach i 'A's by copying and pasting from a smaller number of 'A's.
Optimize the solution by only considering the divisors of i when calculating dp[i], or by using the prime factorization approach.
Handle edge cases such as n = 1 (return 0, as we already have one 'A' on the screen).
Modify the code to implement an alternative approach and test it with the same examples.
Implement a function that solves the 2 keys keyboard problem using a different approach than shown above.
Handle the case where n = 1 (return 0, as we already have one 'A' on the screen).
Handle the case where n is a prime number (the minimum number of operations is n).
Handle the case where n is a composite number (the minimum number of operations is the sum of its prime factors).